
TECHNICAL REPORT

GENERAL RESEARCH
IN FLIGHT SCIENCES

JANUARY 1959 -JANUARY 1960 m "

F-EC~ EAm.APR 0 41994131

"OLUME IV
MATHEMATICS AND STATISTICS

LMSD - 288139 JANUARY 1960

WOR- ý,ARRIED OUT UNDER
THE LO KHEEL• GENERAL RESEARCH PROGRAM

Best Available Copy
LOCKHEED AIRCRAPr, COR, :'RATICN *SUNNYVALE. CALIF.



TECHNICAL REPORT

GENERAL RESEARCH
IN FLIGHT SCIENCES

JANUARY 1959 - JANUARY 1960

VOLUME IV 
..

MATHEMATICS AND SIATISTICS

LMSD - 288139 JANUARY 1960

WORK CARRIED OUT UNDER

THE LOCKHEED GENERAL RESEARCH PROGRAM

MISSILES and SPACE DIVISION

LOCKHEED AIRCRAFT CORPORATION * SUNNYVALE. CALlIF.



FOREWORD

The Lockheed Missiles and Space Division sponsors a comprehensive program of

general research in connection with its defense contracts. A portion of the total

research effort at LMSD is carried out in Flight Sciences in the fields of fluid

mechanics, mechanics of deformable bodies, flight dynamics, space mechanics,

and mathematics and statistics.

The results obtained from theoretical and experimental studies in Flight Sciences

are felt to be of general interest and have been assembled into a collection of

research reports. These reports comprise a series of papers which deal with

various topics in the fields listed above.

This volume is concerned with mathematics and statistics.
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INTERVAL ANALYSIS 1

R.E. Moore

C.T. Yang



FOREWORD

This article is a reprint of the Technical Document

UMSD-285875, bearing the same title and dated September

1959. It discusses work carried out under the Lockheed

General Research Program.
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INTERVAL ANALYSIS I

INTRODUCTION

Digital computations by computers consist of finite sequences of psuedo-

arithmetic operations. On the other hand, the exact numerical solution

of a mathematical problem, if computable at all, often requires an infi-

nite sequence of exact arithmetic operations.

The study of approximation by digital computations is the underlying

motivation for the present study A digital computation and the analysis

of its error as an approximation are usually carried out separately.

However, in the present study an interval arithmetic is devised which

forms a basis for a concomitant analysis of error in a digital computa-

tion. In this system, computations are performed with intervals and

intervals are so produced to contain, by construction, the exact numeri-

cal solutions sought Hence an approximation and its possible error will

be obtained at the same time, choosing say the midpoint of an interval as

the approximation.

This report is the first part of our study, in which we first examine

some properties of exact or ideal interval arithmetic. After a prelimi-

nary discussion of the space of intervals (§ 1) we study addition, multi-

plication, subtraction and division of intervals (§§ 2-5). Then we con-

struct arithmetic functions as compositions of these elementary operations

( §6). As one may expect, arithmetic functions play exactly the same role

in interval analysis as rational functions in real analysis, so that there

is a relation between arithmetic functions and rational functions (§ 7).

-1-
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In the present report we apply interval analysis to the study of the

following problems. Let f(x) be a continuous real-valued function de-

fined on an interval [a,b]. (1) What is the image interval f(Ea~b3)? I
(2) What is the definite integral gbf(x) dx ? When f(x) is a rational

function, the approximations are given in theorems 1 and 2 (§ §8,9). In 3
general, if f(x) is an arbitrary continuous function, we may still have

approximation theorems 3 and 4 (§ 10), although they are not as precise 3
as the first two theorems.

In forthcoming reports we shall apply interval analysis to differential I
equations and report on results of machine computations using a digital

version of interval arithmetic modified to enable the computations to be 3
carried out with pseudo-arithmetic operations. (See also, LmsD-48421,

"Automatic Error Analysis in Digital Computation;' by R. E. Moore.) 3
1. PRELIMINARIES 1
Throughout the whole study R denotes the real line. Whenever a and

b are real numbers with a < b , Ea,b] denotes the subset of R con-

sisting of all the real numbers x with a ( x < b . In symbols,

Eapb = {xER a < x b}

Let J be the set of all such sets [a,b]

That means, I

J =Ea~bJ a,bER and a <b}

I
I

-2- 3
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Then we have natural functions

a : -- R ,

y :e2--R,

defined by

p(x) = Ex, x],

A([a,bJ) b

v([a,bJ) m nax {IaI J bi}

a([a,,b]) =b - a

respectively, where xeR and [a,b]ee .

Whenever x,x'eR , we let

P(x,x,) = Ix - x'I

Then p is a metric on R , that means, P has the following properties.

(1) Whenever x,x'eR , P(x,x') = 0 if and only if x =x'

(2) Whenever x,x'eR , P(x,x') = P(x',x) .

(3) Whenever X,X',X"ER , P(x,x') + P(x',x") >p(x,x")"

-3-
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Whenever A,A'EJ we let 3
P(A,A') = max kpa(A) , a(A')), P (P(A), B(A')')}

Then P has the same properties as those p has on R so that P is

a metric on 3 . I

As direct consequences of the definitions of P , P , , a, , we

have

(i-i) The function p : R is isometric; that means, for any 3
X,X'IER ,

P (p (x) , px) W P (x,x' I
Hence p maps R homeomorphically onto p(R) . 3

(1-2) Whenever A,A'eJ ,

p(a(A) , a(A'))<P(A,A') .

Hence the function a : J-0 R is uniformly continuous, that means, for

any & > 0 there is a 8 > 0 such that whenever AA 4. with 3
P(AA ) < 8B we have P (a(A) , c(A )) < &.

Since uniformly continuous functions are continuous, it follows that: I

(1-3) The function a : J-+R is continuous, that means, for any 3
AJ and any 6> 0 there is a 8 > 0 such that whenever A'sd with

P(AA') < 5 we have p(a(A) , a(A')) < •,

Just as (1-2) and (i-3), we have 3
(I-4) Whenever A,A'j ,

P (P(A) , P(A')) <P(A,A') • 3

LOCKHEED AIRCRAFT CORPORATION MISSILES and SPACE DIVISION 3



Hence the function 0:4-4 R is uniformly continuous and consequently

it is continuous.

Using (1-2), (1-4) and well-known properties of real numbers, we have

(1-5) The functions y : J-+ R and a -- R are uniformly con-

tinuous and hence they are continuous.

The following will be needed later

(1-6) Let A,A'eaP and let a> 0 . Then P(A,A') < a if and only

if the following two conditions hold.

(i) For every xeA there is some x'EA' with p(x,x') < a .

(ii) For every y'CA' there is some yeA with p(y',y) < a .

Whenever IJ we let

09 = (AE. I AcI)

(1-7) Whenever ItE , jI is compact; that means, every sequence in

69 contains a convergent subsequence.

Let 9 be the subset of J consisting of all the elements of J not

containing 0

(1-8) The set 9 is open in J ; that means, for every Aeý there

is a positive number 7 A such that every A'le with P(A,A') < 7A

belongs to 9. In fact, we may choose 7A min (Ia(A)jI,Ij(A)I)

L-5--
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2. ADDITION 3
There is a function

defined by 3
9 (A,B) = (x +y I xeA and yeB) 3

= [a(A) + a(B) , P(A) + ,(B)] A,BeS

The set Q (A,B) is also written A 9 B . The function G is called the

addition on X. 3
(2-1) The function p : R-)J preserves the addition; that means, 3

for any x, yER ,

p (x) p p (y) = p (x + y) 3
Because of (2-1), the addition E on Q may be regarded as an extension 3
of the addition + on R . This is the reason for calling G the

"addition" on J . 1

(2-2) The addition * is commutative; that means, for any A,Be4

A9B=B)A 1I

(2-3) The addition 9 is associative; that means, for any A,B,CE.R , 3
A E (B 9 C) = (A e B) ec 3

(2-4) Whenever (A,B) , (A',B') eQxd ,

P(A 6) B ,A' 9) B') <, P(A,A') + P(B,B').

-6- 3
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I
Hence the addition 9 is uniformly continuous; that means, for any
E > 0 there is a 5 > 0 such that whenever (A,B) , (A',B') E~xJ with

P (AA') < 5 and P (BB') < 8 , we have P (A B ,A' B') <6

I Proof. Let

A = Ea,b2, ' Al La',b'] , B = c,d] , B' [c',d']

Then

P (A B A' B') =P ([a + c b + d] Ia' + c' + d'

= MAX p (a + c I a' I+ c ) P (b + d Vb' +d

< max (p(a,a') + P(c,c') , p(b,b') + p(dd'))

I < max (p (a,a') , p(bb')) + ma (•(c,c') I P(d,d'))

= P (AA') + P (BB') .

To prove the uniform continuity we have only to pick = /2 . q.e.d.

Since uniformly continuous functions are continuous, it follows that

(2-5) The addition D is continuous; that means, for any (AB)E9xS

I and any & > 0 there is a 6 > 0 such that whenever (A',B') J•xX

with P (AA')< <8 and P (BB') < , we have P (A9 B ,A' 9 B') <

1 3. MULTIPLICATION

I Whenever ABc we let

I b (A,B) = (xy I xeA and yeB)

We claim that b (AB) c4/

1 -7-
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Let A = Ea,b] and B = Lc,d] . Then we have the following cases

(1) If a •0 and c>0, then

Q (A,B) = [ac,bd] . I
(2) If a .O and c < 0 < d , then 3

& (A,B) = [bc,bd .3

(3) If a > 0 and d < 0 , then

0 (AB) = Ebc,adJ . I

( 14.) If a < 0 < b and c : 0 , then I

® (A,B) = Eadbd] .

(5) If a < 0 <b and c < 0 < d , then

QD (AB) =Emin (bc.ad) , max (ac,bd)] •

(6) If a < 0 <b and d< 0 , then 3
( (A,2 B) = [bc,ac]

(7) If b 0 and c >0 ,then

a (AB) = [ad,bc] I
(8) If b 0 and c < 0 < d , then 3

( (A, B) = Ead,ac] .

(9) If b < 0 and d < 0 , then

S(A,,B) = [bd,ac] I

I
-8-
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Because of this result, we have a function

called the multiplication on Whenever A,BBcd , the set 0 (A,B) is

also written A Q B .

(3-1) The function p : R--a9 preserves the multiplication.

Because of (3-1) the multiplication ® on # may be regarded as an ex-

tension of the multiplication on R

(3-2) The multiplication 4 is commutative; that means, for any

A, Bcd ,

A 4B=B 0A.

(3-3) The multiplication I is associative; that means, for any

A,B,Ccs ,

A ®(B 0 C) = (A 0 B) Q C

(3-4) For any A,B,Ce ,

A @(B 9 C) C(A 0 B) E (A ® C)

but both sides may not be equal. Hence the distributive law does not hold.

(3-5) Whenever (A,B) , (A',B')xe 9 x 2

P(A 0 B , A' 0 B') < y (B) P (A,A') + y (A') P(B,B')

Hence the multiplication is continuous.

Proof. Let xyeA ( B , where xcA and ycB . By (1-6), there is some

x'eA' and some y'eB' such that p (x,x') .< P(A,A') and

p ( y,y') < P (B,B')

-9-
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Therefore x'y'cA' 0 B' and 3
P( xy , x'y') = Ixy - x j

= ly(x- x') + x'( y- y')3
1< y1 {-1 x'I + 1x'1-1y - y'l

y•(B) P(A,A') + y(A') P(B,B') 3
Let x'y'eA' 4 B' , where x'eA' and y'eB' . Similarly there is some

xyeA 0 B such that xeA , yEB and

p(x'y' , xy) <y(B) P(AA) +y(A') P(BB') 3
Making use of (1-6) again, these results imply the first part of (3-5). 3
To prove the continuity of ® , we let (A,B)2x9e9 and let &> 0

Take I

8= min{E&/QY(A) + 7(B) + 1), 1 .

Then for any (A',B') cJ x. with P(A,A') < 5 and P(B,B') < 5 we

have 3
P (A B , A' I B') <y(B)b + y(A' IF 7 (B)b + (7(A) +5) 3

It is not hard to see that the multiplication is not uniformly continuous.

However, since the restriction of a continuous function on a compact set 3
is uniformly continuous, it follows from (1-7) and (5-5) that

(5-6) Let I and J be fixed elements of O . TI- the multiplication 3

-10- 3
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is uniformly continuous. In fact, for any A,A'EI and B,B'EJ we

have

P(A Q B , A' 4 B') < ( J) P(A,A') + (I) P(B,B')

4. SUBTRACTION

By (3-5) we have

(4-1) Let E be a fixed element of JQ . Then the function • E of

9 into . , defined by

OE(A) =E ODA, Aed

is uniformly continuous.

In particular, if E = C-l, -1] , we have

(4-2) The function O E _ ] . : Q -+ defined by

S[-l -] (A) =[-i, -1] ) A, Ac• ,

is uniformly continuous.

Whenever Ad , we shall abbreviate Q [ -I] (A) by -A . Since

-(-A) = A , 0 is a homeomorphism.

Combining the addition 9 and the function D I-., -i] we define the

subtraction

e :Jx ----

by

9 (AB) = Ae (-B) =(x- y xEA and yeB) ,ABe

-11-D
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The set e (A,B) is also written A e B

From (2-1) and (3-1), it follows

(4-5) The function p R --4 preserves the subtraction.

(4-4) Whenever A,BQ , I

(-A) ® B = A D (,-B) =-(A B) , I
(-A) e(-B) = A ZB. I

From (2-4) and (4-2) it follows

(4-5) The subtraction G is uniformly continuous and hence is con- I
tinuous. In fact, for any (AB) , (A',B')xEJ x ,

P(A9B , A' B <) P(A,A') + P(BB')

5. DIVISION I

For every A=[a,b] 9e (see •1), I
A71  {ýx 1 xEA} = [b-1. a-]

is in -. Hence we have a function r : -- , . defined by I
S(A) =A7

(5-1) Whenever Jie , C2 C ý and for any A,AtE Qj , U
P (A-' , A71) Y(r(J-1)2 P(A,A').3

Hence T is uniformly continuous on , Je., and consequently it is

continuous on 9. I
I

-12- 3
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Proof. Let A,A'c.jQ For any xcA there is, by (1-6), Some x'eA'

such that p(x,x') < P (A,A') so that

P (x-j,-I - - X-1 x- 1 I x -

( 7 (J) 2 P(A,A')

Similarly, for any y'eA' there is some ycA such that

Sy < (J) 2 P(AA') . Hence the first part is proved.

To prove the uniform continuity of x on cj, Je9 , we let & > 0 and

take

It is clear that for any A,A'c.Qj with P(A,A') ( , we have

P (A-', A'-') < (J-l)2 5= .

To prove the continuity of 7 we let AE9 and let E > 0 . Take a

JE such that

a(J) < a(A) < P(A) < P(J)

Then for any A'EJQ with P(A,A') < min fc(A)- c(J) , p(J)-1(A))

A',. Hence the continuity of T on ej implies the continuity of

T at A . q.e.d.

Since (A-1)-l = A,AEg., r is a homeomorphism.

Combining the multiplication 0 and the function T we define the division

-13-
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The set * (AB) is also written A/B

Since for any real number x ý 0 ,

p (x ) pI(o)

it follows from (3-1) that

(5-2) The function p preserves the division I

From (3-6) and (5-1) it follows

(5-3) Whenever Ic. and Jcj, I

S x JI --*a 3
is uniformly continuous. In fact, for any (AB) , (A',B') eQI x 3j
we have

P (A/B,A'/B') < y(-) P ( A,A') + y (J -1)' y(I) P (B,B') .

Hence ( : e9 x 9--*t is continuous. 3

6. ARITHMETIC FUNCTIONS 3

Before giving the definition of an arithmetic function we remark that every 3
arithmetic function has a domain contained in J , an order which is a non-

negative integer, and a finite number of parameters which are elements of

d An arithmetic function of order n with parameters AI,A 2 , ... Am

is written Vmn) or simply F . It is a function from its domain

.9(F) to

-14-AE
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An arithmetic function of order n is defined by induction on n When

n = 0 , the number m of parameters is either 0 or 1 . In the former

case it is the identity function F(O) : J --+ given by

F(O)(x) = x , xc.9

In the latter case it is the constant function F(A) given by

F(o)(X) - A , ,

where A is an arbitrary element of 9 Notice that every arithmetic

function of order 0 has J as its domain.

Let n be a positive integer and suppose that arithmetic functions of

order < n have been defined. Then every arithmetic function

FA(n) of order n is defined as follows. There is an arithmetic

function F(s) of order s , 0 < s <, n-l , with parametersAjA2 ... A I
AVA 2, ... , A• , 0 < m , and an arithmetic function FA(n-i-s)

of order n-l-s with parameters A,+ ,A,+ 2 , *.., Am such that

F(n) - F(s) o F(n- -s)
A1A ... AM A1A2 ... A A1+ +A ... Am

F(n) (X) =F(s) (X ) o(n-i-s)AiA 2 ... Am A1A2 ... At ( A A ... A(X)

where o is one of Q , 0 , , and X is such an element of . that

the right side is well-defined. It is clear that if BI and B2 are the

respective domains of F(s) and F(n-l-s) then the
AA 2 ... A A Am

domain 1? of F(n) is given byAA2 ... Am

Yn-P n (F (An-1 As) .. m-l1 (ý) if o is (a

&1 11 B2 if otherwise.

-15-
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Let F be an arithmetic function of parameters A1 ,A 2 , ... , Am and

domain D(F) . We may write

F(A*,A2, ... , Am ; X) 3

instead of F(X) and consider F as a function of 0 m xA&F) into S 3
Notice that J(F) depends on A1,A 2, ... , Am .

(6-1) If F(B1 ,B 2 , ... , Bm ; Y) is defined, then for any I
CiJB1 , C2 ESB 2 , .. , CmJBmi ZJey, F(C 1 , C2 , ... , Cm ; Z) is defined

and is contained in F(Bl, B2 , .. , Bm ; Y) I
Proof. If F is of order 0 , our assertion is trivial. Hence our

assertion holds for arithmetic functions of order 0 . I

Now we proceed by induction. Let n be a positive integer and assume 3
our assertion for all arithmetic functions of order < n . By definition

every arithmetic function F of order n with parameters A1 ,A 2 , "'". Am

is given by

F(A3, A2 , ... , Am ; X) = F1 (A, .. ,At ; X) 0 F2 (Aj+ 1 , ... , AM ; X) I 3
where F 1 and F 2 are arithmetic functions of order < n and 0 is one

of a,ee ,@ I

If F(B 1,B 2 , ... , Bm ; Y) is defined, then F 1(B 1, ... , B, ; Y) and I
F2(B•+I, ... , Bm ; Y) is in 9 when 0 is a . By the induction

hypothesis, for any C4EJB1, COEB 2 , ... , CmEJBm, IZEy, Fi(C1 , ... , C ;Z)I

and F2 (C0+i, ... , Cm; Z) are defined and 3
Fj(Cj, ... , Cl ;Z)4 CFj(Bj, ... , Bj; Y) ,

F2(C1+1, ... , Cm; Z)CF 2 (B1 +1 1 ... , Bm;y) YI

-16-AE
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So F 2 (Ct+i, ... , Cm;Z)e9 when o is • Hence

F(C 1 ,C9, ... , Cm; Z) = F1 (Cl, ... , C,;Z)o F2 (C+i, ... , Cm; Z)

is defined and is contained in F (BI,B 2 , ... , Bm; Y) q.e.d.

(6-2) If F (Bl, ... , Bm; Y) is defined, then there is a number k>0

such that whenever AL,AI6EB 1 , A.., Am, A•e 9 Bm, X,X 'Sy , we have

P (F AI, ... ,I Am; X) , F (A I,' , A ; X ')

k k(P(A,AI) + ... + P(Am,AA)+ P(X,X').

Hence F is uniformly continuous on d 131x ... x 4. x ýy

Proof. When F is of order o it is evident that the inequality holds

with k = 1 . Therefore we may proceed by induction and assume the in-

equality for arithmetic functions of order < n .

Rvery arithmetic function F of order n is given by

F (A, ... , Am; X) = F 1(Al, ... , A ; X) o F2 (Al+1 , ... , AM; X)

where F 1 and F 2 are arithmetic functions of order < n and o is

one of a. , e , , . By the induction hypothesis, there exist positive

numbers k and k such that whenever A 1 , AiejBi, ... AmAý ,

x,x'r y , we have

P (F,(Al, ... , Aj ; X) , Fj(AI, ... , A'; X'))

,< k 1(P(A 1 ,A) + ... + P(AL,A') + P(X,X'))

P (F2(At+]I, ... I Am ;X), F (A'+,.. A;X

<k (P(A, 2 ,A,+I) + ... + P(Am,Aý) + P(X,X'))

-17-
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By (2-4), (3-6), (4-5), (5-3), there exists a positive number k for

which our desired inequality holds. In fact, we can let I
2(k +k 2 ) (J-1) +7(J1)2 7(I) if o is 4D

12 (ki + k2 ) (I) + r(J) + 1> if otherwise,

where

I =FI(B1 , ... , Bt ; Y) , J= F2 (B,+L, "," Bm; Y)• I
q.e.d.

(6-3) If F(B]1 , ... , Bm; Y) is defined, then there is a 8 > 0 such

that whenever AI, ... , ATr, XES with

P(AI,Bi) < 8 , ... , P(Am, Bm) < 5 , P(X,Y) < ,

F(A3, ... , Am; X) is defined and is continuous. U
Proof. If F is of order 0 , then our assertion is trivial. Therefore,

we may proceed by induction and assume our assertion for arithmetic

functions of order < n , n > 0 .

Every arithmetic function F of order n is given by I
F(A,, ... , Am; X) = F1 (A,. ... , A ; X) o F2 (A.+ 1 , ... , Am; X) , I

where F1  and F2  are arithmetic functions of order < n and o is one

of ( , e , @, $. I

By the induction hypothesis there is a positive number 8 such that when- 3
ever A,, ... , Am, XeoR with P(A 1 ,B 1 ) < 8 , ... , P(Am, Bm) < 5,P(X,Y)<5,

both F1 (Aj, ... , Ag,; X) and F 2 (A1 +1 , .. , Am; X) are defined and con-

tinuous. If F2 (B.+ 1, ... , Bm; Y)E-, we may choose 8 so small that

F2(A+.I* ... , AM; X)* . Hence F (Al, ".., Am ;X) is defined and is

continuous. q.e.d.
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It follows from (6-1), (6-2) and (6-3) that

(6-4) Let F be an arithmetic function with m parameters and let

U = ((Al, ... , Am; X) € m+'I F(Ai, ... , Are;X) defined)

Then U is open in 4m+1 and F is a continuous function of U into

d . Moreover, for every (Bi, ... , Bm; Y) EU , SB1 X ... XBmX•Yc4 U

and F is uniformly continuous on JBlx ... x SBQ xy . Furthermore,

(Al, ... , Am; X) E0Blx ... xcQBmX2y implies

F ( A l, -. . ,X C : ( l . . ., B ; Y )

When we write F(X) in place of F(A1 , ... , Am; X) it is understood that

parameters A1, ... , Am are fixed. Since

D(F) = (XE4I F (X) defined) ,

it follows from (6-4) and (6-2) that

(6-5) For every arithmetic function F ,(F) is open in A and

F:D(F)-+j is continuous. Let IE9(F) Then JI=2r(F) and XEJI

implies F(X)CF(I) . Moreover, there is a positive number k such

that whenever X,X'EjI ,

P (F(X), F(X')) < kP(X,X')

7. RELATION BETWEEN ARITHMETIC FUNCTIONS AND RATIONAL FUNCTIONS.

In the construction of arithmetic functions, if we replE e 49 by R and

replace a , e, 0, Q by corresponding operations on R , then we obtain

rational functions in place of arithmetic functions. Therefore, we can

establish a relation between arithmetic functions and rational function.

-19-
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An arithmetic function is called special if all of its parameters belong

to p (R) .

(7-1) If F is a special arithmetic function of domain P(F) , then 3
P-1((F) is open in R and for every xcpl(9(F)) , Fp(x)Ep (R) .

Moreover, there is a unique rational function f whose domain contains

p-1"((F)) such that pf = Fp or f = p-'Fp 3
R P - 'Q

if I, I

p'(.k(F))-L-. D(F)3

As the converse of (7-1), we have

(7-2) Given any rational function f of domain D(f) there is a

special arithmetic function F of domain &(F)=p(D(f)) such That

f = P- 1 Fp ' I

Remark. It is possible to have two distinct special arithmetic functions

F. and F2 such that p-1 FJp = p- p . For example,

F1 (X) = (X0X) •X , I
F 2(X) = X 0 (x (D p~l)) ,xIE,

give two arithmetic functions F1 and F2 of donwin 1 . It it clear
thatI

(p-'Flp)(x) = x + x = x(x + 1) = (p-lF2 p)(x)

Since I
F 1 ([.l, o]) = [-) , iJ ) F 2 ([-l, 01) = [-i o0

F1  and F 2 are distinct.

-20- 3
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I
Let F be an arithmetic function with parameters A,, ... , Am Let

G be the arithmetic function with Bl, *.., Bm in place of Al, ... , Am

respectively; that means, it is given by

G(X) = F(B 1 , ... , Bm; X)

If B,1 = Al, ... , BmmC=Am , then, by (6-4), .9(F)CD.•(G) and for every

Xe(F) , G(X)C:F(X) . Hence the relation that BC Al, ... , BmCAm

will be written

GC F

Let f be a rational function and let F be an arithmetic function. If

there is a special arithmetic function G C F with f = p-1 Gp , we say

that f is an associated rational function of F or that F is an

associated arithmetic function of f . In particular, if G = F and then

f =p- Fp , we say that F is an associated special arithmetic function of

f and f is the associated rational function of F

8. FIRST APPROXIMATION THEOREM

Let X. By a subdivision of X we mean

such that

a (X) = xt(.) <P(tl) = c(t 2 ) <1(t2) =a(t 3 ) <

"... < (tr-:.) = a(rr) =PX) =PW

For every subdivision t =Ell t2, ... )rl we let

a(t) = ma at) yk -,c;(tr}

-21-
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Let f be a rational function of domain D(f) ; let G be an associated

special arithmetic function of f and let F be an associated arithmetic

function of f with F MG (see 7).

Let I be an element of J contained in D (f) . Then for every x e,

Gp(x) = pf(x) is well-defined. Since, by (6-5), the domain &(G) of 3
G is open, there is, for every xeI , a positive number rx such that

whenever YeJ with P(p(x), Y ) < rx , G(Y) is well-defined. Let 3
ix = [x-rX/2, X + rx/2].

Then G(Ix) is well-defined. I
Since I is compact, there exist a finite number of points of I , say

x1, x2 , ... , xt ,such that I is contained in the union of the interior I

Qi (xi-rxi/2, xi+ rxi/2)

of Ixi Y i =1, ... , rt . We abbreviate Ixi by IiI

Let B1, ... Bm be the parameters of G and let Al, ... , Am be the

parameters of F . By definition, I
B1 , ... , BmEp(R) ; 3
B 1 CAl, ... , Bm-Am,

G(Y)= F(B 1 , ... , B; Y) , Y E4 (G) ; 3
F (Y) = F(A1,... Am; Y) , Y e.1(F).

By (6-3) there is, for every i = 1, ... , t , a bi>0 such that whenever

a(A,)<6i, ... , a(Am) < 5, F(Ii) is defined. Let 3
3= min{ 1 , ... , t} •

-22-A3
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I

3 Then whenever a(Al) < 35 , ... , a(Am) < 35 , F(Ii) is defined for

all i .

I By a well-known theorem on compact metric spaces there exists a 5' > 0

such that whenever Ye S with a(Y) < 8' ) Y is contained in one ofI
1I, ... , It so that F(Y) is defined by (6-5).

I Let Xe % and let I = I, t r} be a subdivision of X with

0(t) < 5' . Then

F (XI F() U..U F(tr),

I Z(F,X,•)= (F( 1 )0 Pa(j)y) E ... E (F(Ftr) ® Pa(tr))

3 are well-defined when the parameters Al, ... , Am satisfy

3 a(A1 ) < 35, ... , a(Am) < 35.

3 Clearly E(F,X, ) J . Since for every j 2, ... , r ,

I it follows that F(X,t)Ed .

I By (6-2), there is, for every i =, ... , t , a positive number ki

such that for any Y,Y'c.Ii9,

I P(G(Y), G(Y')) kiP(Y,Y'),

I, P(F(Y), G(Y)) • kic(Al) + ... + a(Am))

3 hold where the parameters satisfy

I a(A,) < 8, ... , a(Am) < 8

and ki is independent of the parameters.

* -23-
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Let k = max k1 l ... , kt3

Then for any Y,Y'ejI with o(Y) < 6 and a(Y') < 5'

P(F(Y), G(YV)) < k(P(Y,Y') + a(A1 ) + .. + G(Am)

In fact, there is a finite sequence 3
Yl = YY 2 , ... , Ya = Y3

in •i such that

a(Y 2 ) = ... = °(Ys) = o(Y')

a(Y 2 ) < ... < a(Ys) =•a(Y') 5
and YJ-1 and Yj are contained in the same Ii for some i . Hence 3

kP(Y, Y') = k(P(Y1 ,Y 2 ) + ... + P(Ys_.,Ys)) I

P(G(Yl), G(Y2 )) + ... + P(G(Ys_), G(Ys))

SP (G(Y) , G(Y' )

Moreover S
k aA) + *.+ J(A~m)) >, P(F(Y) , G(Yj3

Our assertion thus follows. 3

Now we are ready to prove 3
Theorem 1. Let f be a rational function of domain D(f) , let G be

an associated special arithmetic function of f and let I be an element3

of d contained in D(f) Then there are positive numbers b, 5', k

such that whenever F is an associated arithmetic function of f with3
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parameters A., ... , Am such that F DG and a(Al) < 5, ... , c(Am)<B,

X is an element of eI and = {i,', r... t} is a subdivision of X

with a(g) < 6,'

F(X,t) = F(tj) U ... U F(Er)

is defined and satisfies

f (X) C F(X,9) C f (X) (B [-K, K],

where

f(x) = f(x) I xE X

Proof. Let 5,8',k be chosen as above. Let F be an associated arith-

metic function of f with parameters A1 , ... , Am such that FC G and

a(A1 ) < 5, ... , q(Am) < 5 . Let XeJ 1  and let 9 be a subdivision of

X with a(l)<5' . We have shown that F(X,t) is defined.

For every ycf(X) there is an xeX with f(x) = y . Let XE% . Then,

by (6-5),

y = f(x) EFp(x)CF(%j)CF(X,)t

Hence f(X)C F(X,t) .

For every yeF(X,t) , there is a tj with y.F(tj) Let xkj. Then

P(tj, p(x)) •< o(j) < a(g) . It follows that

P(F(tj), Gp(x)) < k(a(t) + a(A1 ) + ... + a(Am))

or

P(F(tj) ,Pf(x)) < K.-

-25-
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Therefore3

YEF(t j)~ Cpf(X)a) [-K , K]I

Hence F(X, )C f(X) G [-K , K] [ q.e.K.

Corollary 1. Let f be a rational function of domain D(f) , let G be I
an associated special arithmetic function of f and let X be an element

of 2 contained in D(f) . Let F be an associated arithmetic function

of f with parameters A,, ... , Am such that F :DG . Then whenever t

is a subdivision of X with small a(t) and G(Al), ... , c(Am) are small, 5
F(Xj) is defined. Moreover, as a(t) + a(Al) + ... + c(Am)--+O ,

lir F(XI) = f(X) , I

t h a t m a n s .,l i m .P ( F ( X , ) f ( X )) = 0 . I
9. SECOND APPROXIMATION THEOREM

Theorem 2. Let f be a rational function of domain D(f) , let G be

an associated special arithmetic function of f and let I be an element,

of 1 contained in D(f) . Then there are positive numbers 8,8',k such

that whenever F is an associated arithmetic function of F with parameters

Al, ... , Am such that F MG and c(A 1 ) < 6, ... , a(Am) < r, X = [a,b]

is an element of Jl and t is a subdivision of X, I

E(Fyx,") = ( ®tl * aQ ( .. @ (i'(t1 ) 0 PU(Er))

is defined and satisfies i
P 'bf (x) d) C= (F, XC=P (ff f(x )dx) + [-KG(X) , KaY(X)] I
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where

K - k (aY(t) + (;(A,) + ... + c(Am).

Proof. Let 5,5',k be as before. Let F be an associated arithmetic

function of F with parameters Al, ... , Am such that F =G and

a(A1 ) < 8, ... , a(Am) < 8 . Let X = [a,bJ be an element of and

let i = *, be a subdivision of X with a(t) < 8' We

have shown that E(FX,t) is defined.

Let

xx inf f(x), M sup f(x)mj =C xjj xetj

I Then

r mbr
E.r mj a() •<aff(x)dx < Er= Mj ()

I Since t is compact, there is a point x of i with f(xj) mj

Then

I mn = f(xj) cFp(xj)CF(%j)

I so that

I mi cj(. EF(j 0 pa()

I Hence

E. r mjY(t ) € (F,X,)t

Similarly we can show that

ET=. Mja(t.),(F,X,')
J=1 j

-27-
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Since E(F,X,t)cJ , it follows that I
p (bf(x) C (FX) .,

Let xj be as above. Since g

it follows that P (t P(x 
C( (I

P (F(t i), Gp(xj) < at + a(Al) + ... + a(Am))KI

so that 
3

F(j) •p(mj) @[ IK, K]

Therefore 

C

F(%) O()t C:•p(mj a(tj)) 9 [-K a(tj), KO(tj)] • 3
Hence 3

.(F,X,)c0CPrp r m (Y) ( [-K(X), K 0(X)] .

Similarly we can prove that

E(FX,t)C p r~ mj 0(t j (D[K Y() , K(X)]

Since Z(F,X,k)Ee2 , it follows that U
Z(FY ,x, .p fbr(x)dX) [-K C(X), K C(X)]I

q.e.d.

Corollary. Let f be a rational function of domain D(f) , let G be

an associated special arithmetic function of f and let X = [a,b] be an j
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element of JQ contained in D(f) .Let F be an associated arithmetic

function of f with parameters A., ... , Am such that F D G . Then

whenever t is a subdivision of X with small a(t) and

a(A 1 ), ... , a(Am) are small, E(F,X,9) are defined. Moreover, as

+ a(A.) + ... + a(Am) -- 0 ,I
lrm .(FXX) = f f(x)dx

that means

lim P F,X,t), p Lff(x)dx =0

10. APPROXIMATION OF A CONTINUOUS FUNCTION BY ARITHMETIC FUNCTIONS

i Let I be an element of 4# and let f = I--+ R be a continuous function.

Let

I {Fn} = {F1, F 2,).

j be a sequence of arithmetic functions such that p(I) is contained in the

domain P(Fn) for all n . If for every xcI,

I F~p(x) 0 Fp(x) 0...

I and

n=J np(x) = pf(x)

we say that {Fn} converges to f . In symbols,

lim F f
n--*c n

(10-1) Let f be a rational function of domain D(f) and let I be

I an element of J contained in D(f) . Let F be an associated arithmetic

1 -29-
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function of f with parameters Al, ... , Am . Then for every e > 0 3
there is a 5 > 0 such that if a(A1 ) < 5, ... , a(Am) < 5 , then for

every xEI , Fp(x) is defined and a(Fnp(x)) < E . I

Proof. Let G be the associated special arithmetic function of f with I
F-lG and let B1, ... , Bm be the parameters of G . By (6-3) there

is, for every xeI , a 5x > 0 such that if P(A1 ,B1 ) < 5x

P(Am, Bm) < 8x and X is an element of J, with P(Xp(x)) < 5x

then F(X) is defined and P(F(X), Gp(x)) < C/2 . Since I is compact

there exist a finite number of points of I , say xl, ... , xt , such I
that the union of

(xj -
8 x ,x + 8 xj) j = 1, ... , t ,

contains I . Let

8 = min {8fX, .*.., S} 3
It follows that if P(A1 ,Bl) < 8 ... , P(Am,Bm) < 8 , then for every xel , j

a(Fp(x)) < I,

In fact, there is an x with P(P(x), P(xj)) < 6, so that 3
P(Fp(x), pf(x)) < e/2 . Hence

Let f be a rational function of domain D(f) and let I be an element 3
of J contained in D(f) . By (10-1) we can easily construct a sequence I

-30- 1
LOCKHEED AIRCRAFT CORPORATION MISSILES and SPACE DIVISION 3



of arithmetic functions

F1 • F2 • ...

such that for every xcI ,

a(FnP(x)) < 1/n n = ,2

[ Hence
lira

n-*a Fn = f

This result can be extended as follows.

1 (10-2) For every continuous function f I -' R , IEJ , there is

a sequence of arithmetic functions

SFn, n = ) 2

I with

lim
n-- Fn f

Proof. It is well-known that every continuous function can be approxi-

mated by polynomials. For every integer n > 1 we let fn be a poly-

I nomial such that for every xcI , P(fn(x), f(x)) < 1 /( 6 .-3n) . By (10-1),

there is an arithmetic function Gn such that for every xEI , GnP(X)

is defined and

P(Gnp(x), Pfn(x)) < 0/(63n)

Let Fn be the arithmetic function such that

I Fn(X) = Gn(X) E[-4/(6.3n), 4/( 6 -3n)] XE.&(Gn)

I -31-
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I
Then for every xeI , Fnp(x) is defined. Since 3

P(GnP(x), Pf(x)) < P(GnP(x), pfn(x)) + P pfn(X), pf(x ))

< 1/(6-3 n) +ii/(6.5n) - 2/ (6.-3n),

it follows that I

pf(x)= GnP(x) +[- 2 /( 6 .3n), 2/(6.3n)] I

GnP(X)C pf(x) ) [-2/(6"3n), 2/(6.3n)]

Hence

pf(x) 0[+2/(6-3 n), 2/(6.3 n)] C FnP(x)I

C pf(x) ( [-1/3n, 1/3n]

Consequently F p(x)C pf(x) 0 [-1/3 n+1, 1/ 3n+i]C FnP(X) •

n+1 PX

Since a(FnP(x)) <l2/3n and 2 /3n 0 , it follows that lrni F~=

q.e.d. I

Let I be an element of J and let 3

be subdivisions of I . If there exist integers l <J(1)<J(2)<... <J(r)-s

such that for every i = 1, r, r, {ij(ii3)+], ).., *IJ(j)} is a sub-

division of ti I we write T t and call yj a refinement of t . I

Let IJ. and let F be an arithmetic function with &(F) = p(I) . As

before, there is a positive number B such that whenever X wI vith

-32- 1

LOCKHEED AIRCRAFT CORPORATION MISSILES and SPACE DIVISION 3



a(X) < 6 , F(X) is defined. Hence if ý is a subdivision of I with

a(t) < 5 , both F(I,t) and .(F,I.t) are defined.

(10-3) Let F be an arithmetic function and let f : ,. •r}

be a subdivision of Iei such that F(t 1 ), ... , F(tr) are defined. Then

for every refinement 11 = f{T, "'', 1s of • , F(1)r, "., F(1j) are

defined so that F(I,TI) and E(F,I,rI) are defined. Moreover,

F(I, 1) (-F(I, t) , E(F,I,Tj)C E(F,It) .

(10-4) Let Ie.9 and let F be an arithmetic function. Let

= '"'" r be a subdivision of I such that F(tl), ... , F(tr)

are defined, and let

t = t ( 1)• - t(2). . .

be a sequence of subdivisions of I .eThen F(Id(n and

are defined for all n and

If n--lm w (n)) = 0 , then fl__ F(I,t(n)) and C E (F)I,'(n) are

independent of the choice of • and {(n)}

Proof. Let n = {,I, ..."'" be a subdivision of I such that

F(*l), ... , F(•s) are defined and let t = ... , be a refinement

of I . By definition, there are integers 1 .< j(l) < ... < j(s) = t

-55-

LOCKHEED AIRCRAFT CORPORATION MISSILES and SPACE DIVISION



such that for every i = 1,..., Is, ftj(ii1)+1' ***, tj(j) is a sub-3

division of qi.It follows from (6-5) that

HenceI

F(Ijt) = U ..1 . U F(tt)I

C Fn U U F(j%) = FIn

As a consequence of this result we have

Since 3). .( F g ) & p
a(~('(ii-1)+1) 0 P"(t%(i... 1)+l)) 0 FJ(i)0P((i))~

=a ~(Fji1+) a(tj(j- 1 )+1) + + a(F(tji5 tji)

>a(F(lk)o((..)1 + .. + aI(Fij) <(ti(i))g

Cl (F(Tl) rii) = a(F(Tij)0 Pa(-q)

and similarly3
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it follows that

C: F(Tji) 0 pa(Tij).

Hence
Z(F, I.,) (F(tj) 0 pcr(tl) (D .. (F(t)0 pa(ct)•

C (: (F( P())e *... (F(l1s) •Po(sI5 )) = q)

From this result it follows that

E (F),I, t(1) E( Z,,(2) ..

li.m (n.
Now we assume n c= 0 L et ={T l, "'', T be a sub-

division of I such that F(l ), .-. , F(is ) are defined, and let

T1 = T1(1)- •(2) - ...

lira (qn)
be a sequence of subdivisions with n-*+ o - 'k = 0

Let 6>0 . For any yEno F(I, (n)) there is a sequence

(i) (2)

in J such that for every n = 1, 2, ... , ei (n) and Fi(n) 3Y

Since lim a(,(n)) = o 0 n l ti(n)) contains a single point x . By

(6-5) there is a 8 > 0 such that whenever Xel, with P(X.,p(x )) < 6

(6-5) he-e5-

LI-35-
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I
F(X) is defined and P(F(X), Fp(x)) < 6 Since n- (n) = 0 ,

,(n)) < 5 holds for all large n Let I(n) be the element of ,(n)

containing x Then P (n), p(x)} < 5 so that P (n) Fp(x) <6&

Hence for all large n I
y EFp(x) C: F (n) E)[-&,&]C:F 0, (n) L[-C,6 &

This proves that y e l F(I, (n) E1-D ,&J Since y is an arbitrary

point of n n=1 F,(I ,n)) it follows that

n'. F(, (n))c n- F(In,(n)) GEi

Similarly,

= n=1 Fcc (n) (n)) g,

Applying (1-6), we have
•no* F•'() ~ F (I,•()

n i(n))= F ()

In order to prove that nn=1 Z( , n)) -(F,I,(n)) , we may assume

a(I) > 0 . It is sufficient to prove that for every integer m >, 1 and I
every 6 > 0 , E(FI, t(m ) ( I E( DZ(FIl, T1(n)) I

holds for large n . In fact, if this is proved, then I
F, Fl,',(m)) ) E-]& :D noE=I , n l'(n)I

Since & is arbitrary, it follows that E<.•,I,(m )) D% 1 .. ,I,)(n))
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Since m is arbitrary, it follows that

I n1' E(F,I,,(m)) m = Zn(F, I,3 (n))

5 Similarly,

n 00= E(F, I, T(n)) m) "a=1 M=3.(F-I9 (M

1 Hence our assertion follows.

1 Now we let m be an arbitrary integer >, 1 and let •(m) =A 1 . Au}

Let 6 be an arbitrary positive number < 1 . By (6-3), there is, for

3 every xeI a positive number rx such that whenever Xed with

P(Xp(x)) < rx . F(X) is defined and P(F(X), Fp(x)) </u ((,Y(m)))+().

Since I is compact, there is a 8 > 0 such that whenever ( of with

a a(X) < 5 , P(Xp(x)) < rx for some xel .

Since n-w a = 0 , there is an integer no such that

,r(n)) < min (r, /u (y(F(I,(m) + )1)

for all integers > no . Let n > no and let

I •(n) = {B' ,..., By}

I For every i = 1, ... , u , there is a largest integer j(i) with

P(Ai) eBj(i) Clearly

I < J(1). J(2) .< ... .< J(u) = v.

3 Since P(BJ(i),PP(Ai)) <8 , it follows that

SP(F(BJ(i))' Fp (Ai))< ,/u&y(l, (m)))+ i)<
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Therefore 3
F (Bj(i)) C:FpP~(A) ED[-l, 1] CF(A) @E-1l]I

and then

(j(i)) paBj(i)))<(-(F(Ai)) + 1) a (B 1())

Hence 1
F, u (F (B) P( <• lyF(I ))+ m (

i=.1 J(i)'PW <Bj(i < ,•(m)1 ' + Z i (i), I
4 ( ( (, ,(m )) + ) u a TI(n )) <

and consequently

Since, for every k = J(i-l) + 1, ... , J(i) - 1, BkC Ai , it follows

that

C F(Ai) 0 pa (Ai) , i = i, ... , u 3
Hence, by adding these equations, we have 3

411,I'1(n )• C: EFI'm)> I - &I& 1

This completes our proof. q.e.d.

-38- 3
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let F be an arithmetic function with domain D(F) . Let ,pF be the

I subset of f consisting of all the elements X of 2 with p(X)C-B(F)

Then, by (10-4), we may define a function

TF: JF~~e

by
i(X) F X" F(,(n) p

where Xe.9F and t(i) •(s)< ... is a sequence of subdivisions of X

with n-0- 0( i=0

(10-5) Let X and Y be elements of JF with 1(X) = a(Y) • Then

XuYeJF and

I F(Xuy) ='F(x)u-f(y)

I Proof. Since P(X) = a(Y), XuYeQ . Since XuYcJF , p(X)c :(F) and

p(Y) C(F) . Hence p(XuY)C: AF) and consequently XuYeJF.

If Y e p(R) , then Y(Y) = F(Y)C C (X) so that our assertion is obvious.

If Y 4p(R) , then we may have a sequence of subdivisions

•(n) {(n) .(n)

ýt 1 (n)l
of(1) (2) lim (n

of XuY such that ( (< ... , n-a 0t =-0 and for every

integer n there is an integer s(n) with 0(s(n))= P(X) . Therefore

I (n) {=(n) (n)ft 1 "' s(n)J

I is a sequence of subdivisions of X such that q(:) (2) ... and

i nlaD ((n)) =0; and t(n) = (n) ... r(n) l is a sequence ofn--@eD •= 0 an = •~n)+' 'r(n)J

i -39-
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I
subdivision of Y such that •(•) -< &2•) - ... an k• (•(n)) 0o 3
Since

F(X UY, ~(n) -i(X , (n)) - F(Y, (n)),

it follows that 3
F(X uY) =- (X) U Y(Y) q.e.d.

(10-6) f JF o 4  is continuous.

Proof. Let yCJF and let _ > 0 . Since F(a(Y)) is defined, there is

a 5> 0 such that whenever ZJ with a(z) < 8 , P(Z, pcz(Y)) < 5 , 3
F(Z) is defined and P(F(Z), Fpa(Y))< &/4 . Since

F(Z) --7 (Z) D Fp a (Y) Y Ip a(Y),3

we have P(f(Z), fpc(Y)) </li. I

Similarly there is a 8'> 0 such that whenever Z'EA with P (Z', p(Z ))< 6',

F(Z') is defined and
P*(P), p•(Y)) < 6/li . I

For every XEJF with P(X, Y) < min (8, 6') we have Z, Z'eJ such that 3
P(Z,ppa(Y))<8 , P(Z', p(Y))<8' 3

and one of the following holds:

(1) c(x) = a(z), p(z) = a(Y), P(y) = a(Z'), P(z') = P(x) ;

(2) a(X) = a(Z), P(x) = a(Z'), P(z) = a(Y), P(z') = 3(Y) ; 3
(3) a(Z) = (Y)Q, P(z) = c(X), P(y) = a(z'), P(x) = P(z') ;

(4) a(Z) = a(Y), p(z) = a(X), P(x) = a(Z'), P(z') =(Y) . 3
-4O-CS
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In case (1) we have, by (10-5),

"I "(x) = (Z) VY(Y) u(z')

Then f(X) D T(Y) Since

Tn (X ) C:( T pa(Y) ) &/2, E12] Cn(Y)@(D /2, e/2]

I and similarly,

I (Z' : &(Y)® [e/2, &/2]

it follows that

Hence P(F(X) ,F(Y ))< ..I
In case (2), we have, by (10-5),

T((x) U(z') =T(Z)uf(Y)

ISince 'F(z) C (Y) &[-/2 ,&/2] and F(Z' ) C: (Y) 6[C/2, &/2] ,it

I follows that T(X)CF(Y) @[-C,]. On the other hand,

I T((Z'),f PO(X )):< P(F(z') 7 p 0(y)) G)P(Y p 0(X) 'YWP (Y)

I so that 
< C/4-+ E/4 =/2

7(z')C: x)a[-4t/2 , &/2]

I Hence F(Y) C F(X) + [- 6, ] . This again proves that P@(X), F(Y>:< C.

L -AlR-
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Similar argument shows that our assertion also holds for the other two 3
cases. q.e.d.

(10-7) Let I be an element of . and let f : I -* R be a con- I
tinuous function. Let {Fn} be a sequence of arithmetic functions with 5

lim
n- Fn f Then

and n () f (I)I

n~i n

Proof. Let n be an integer >.1 Let > 0 . For every xE 3
there is an rx > 0 such that whenever X ca9 with P(XP p(x)) < rx

Fn(X) and Fn+1 (X) are defined and P(Fn+1 (X) , F n+ip(x) < . Let

8 be a positive number such that whenever XEJ1 with a(X) < 6 we 3
have P (X, P(x)) < rx for some X EX .

Let kl, ... , krj be any subdivision of I with a(t) <8 . For

every i 1, ... , r , there is an xi E I such that P(ti, P(x) < rxi I
Then Fn+1( ki)C Fn+ 1P(Xi) ( D , C :n P (xi) F" r, ]

so that I
Fn+,(I,'E) CF n(I'y )E- & I-l

Hence

-42- 3
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Since & is arbitrary, it follows that

Tn+(I) C -f(I)

This proves that

"fl(I):) T2(I) ..

Clearly F(I) D f(I) for all n Let & > 0

For every n = , 2, ... we let

In = {xe II P(FnP (X), pf (x))

It follows from the continuity of F that I is closed in I . Sincen n

I =) I2 =... and n-Go I = , we infer that there is an integer n1 2nn=1 n 0 no

such that whenever n > n , P(FnP(X), pf (xW) < & holds for all xcI.

Let n > no. Then for any subdivision l = ,.., of I we

have

Fn(ti)C f(h) .[-&'e] Y i , ... , r

Hence

n(I ) C Fn(I, 0 C f (I) &Y[ 6&]

Since & is arbitrary, we infer that

nl_ F_(I) = f(I) q.ed.

Theorem 3. Let IEAR and let f : I --- R be a continuous function.
g im

Let {Fn} be a sequence of arithmetic functions with nlm Fn = f

-LI-
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I

Then there is a sequence •(i) < (2) 4 ... of subdivisions of I such 3
that n- (n) 0 and

(n=l Fn('•(n) = f(I)

If, moreover, for every xe I and every integer n >, 1 , Fn+i p(x) is

contained in the interior of Fn p(x) , then there is a sequence 3
(1).< t(2). ... of subdivisions of I such that lim C((n)) =0

F1It(-) F(I (2)=).. and ~n G Fn(It (n)- f(I).

Proof. By (10-7), we have F1 (I) D 2 (I) ... and n= Fn(I) = f(I) .

Let t(l) be a subdivision of I such that a(t(1)) < i and I
P(F(Il(')), F(I)) < 1. Suppose that we have subdivisions

t(1) < t(2). ... (k) of I such that a(t(n))< 1/n and

p ,(n )), T(I)) < 1/n, n = 1, ... , k . We let t(k+i) be a refine- I
ment of t(n) with PFk+ l (I(k+l)F , F (I) < 1/(k+l) By induction, I

we have a sequence t(1) (2) - ... of subdivisions of I with

PFn ,n(I))< 1/n . Hence

fý=l n(I )) = f(I) .

If for every x E I and every integer n >, 1 , F n+ p(x) is contained in

the interior of Fnp(x) , as in the proof of (10-7), there is a 6n >0 3
such that whenever • is a subdivision of I with a(t) < bn I

Fn(I, )•F (In), n = 1,2. ...... Now we construct a sequence 3
-44- 3
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(1) (2) 4 ... of subdivisions of I , just as above, satisfying the

additional condition that

,( ) < 5n=l2,...

Then our conclusion follows. q.e.d.

Let F be an arithmetic function with domain D(F) and I be the sub-

set of 1 consisting of all the elements I of J with p(I)C •F)

Then, by (10-4), we may define a function

by

F(1) =* 1 n ~l I,'lt(n)

where Ie .F and t(1),< t(2)< ... is a sequence of subdivisions of I

wt lim (nwith n -+ c a ( )= 0.

As (10-5), (10-6) and (10-7), we have

I (10-8) Let I and J be elements of I with P(I) = a(J) • Then
I IU"J e J and

IaF(I 
wJ) = FF(1) 

a EF(J)

(10-9) E : JF.. .9 is continuous.

1 (10-10) Let I = [a,b]EJ and let f : I--+ R be a continuous function.
<Fn lim

I Let tF be a sequence of arithmetic functions with n-l Fn = f

1 -45-
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1

Then 3
F-F(,) -D Z2(,) D ...

and (• I bf f(x)dxn1a 3
Making use of (10-10) and the definition of Z., we can prove 3
Theorem 4. Let I = [a,b]e and let f : I -*. R be a continuous

function. Let ý1Fnf be a sequence of arithmetic functions with
lim •(1) •(2)l

n-+ Fn00 f • Then there is a sequence t(i) -< ... of sub-

divisions of I such that n- a n = 0 and

nn 00 n('I'FT(n)l f f(x)dx
n= n% fl a

If, moreover, for every xeI and every integer n >, 1 Fn+i p x) is

contained in the interior of Fn p(x) , then there is a sequence

(1) (2) ... of subdivisions of I such that n1-* 4() 0 ,

E1, yIlt (I) ý. ,IJ (2)• D... and 0 E J(n,I,(n)) = bbf(x) dx1 n=1l al

I

l
3
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ABSTRACT

The paper constitutes a study of the convergence of infinite products

of unitary matrices connected with Jacobi methods for computing elgen-

values of Hermitian matrices. Bounds are obtained for the error in

approximate eigenvectors resulting from a finite number of steps of

three Jacobi processes, namely, the classical Jacobi method, quasi-

cyclic restricted Jacobi methods and threshold cyclic Jacobi methods.

The results apply only to Hermitian matrices which do not have re-

peated eigenvalues. Also, certain questions are answered concerning

the representation of an arbitrary unitary matrix as an infinite

product.

v
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CONVERGENCE OF APPROXIMATE EIGENVECTORS

IN JACOBI METHODS

1. INTRODUCTION. In this paper we are interested in studying the con-

vergence of infinite products of unitary matrices connected with Jacobi

methods [4] for computing eigenvalues of Hermitian matrices. We obtain

bounds for the error in approximate eigenvectors resulting from a finite

number of steps of a Jacobi process. Also, we are able to answer cer-

tain questions concerning the representation of an arbitrary unitary

matrix as an infinite product. Use is made of the classical results of

Jacobi [5] and of the recent results of Henrici [4] and Pope and Tompkins

[71. Basically, we adhere to the notation and terminology used in [4].

Consider the following computational algorithm. Let A : Ao- (arc)

be a Hermitian matrix of order n with eigenvalues Nr(r n,2, .... , n).

One calculates a sequence of matrices A,, A2 , A (ar)),

which are unitarily similar to A by the recurrence relation

Ak+1 = AkUk (k 0, 2I, ) (1.1)

The (u(k)
The Uk = (urc)) are special unitary matrices of order n . For every

value of k there is specified a pair n k = (ik I ¾k) (' j) of

indices (we omit the subscript k in the sequel for notational sim-

plicity) satisfying 1 9 i < j • n , such that the 2 x 2 matrix

* Bracketed numbers indicate References, page 21.

1
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u (k) u(k) I
uii ij

which is a principal submatrix of Uk , is unitary. All other elements

of Uk satisfyr {

u(k) r curc = 8rc =L #c(1.3)

The matrices Uk are completely determined by the pairs Ak and the

2 x 2 unitary matrices Vk . I

Any set of rules for choosing the Uk is called a Jacobi method. 3
A Jacobi method is said to be convergent if

Ak* A (k*o•), (1.4) I
for all A under the adopted set of rules, where A is a diagonal me- ýx

whose diagonal elements are the Nr in some order. Either of the

quantities 3
rrc (1.6) 1

or •k= ~~Max Ia~k)Ir(1)
r/Ac

may be used as a measure of the closeness of Ak to A For the I

Jacobi methods to be considered in this paper, a necessary and suffi- 3
cient condition for convergence is that Sk * 0 (k * •) or,

I
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equivalently, Pk * 0 (k* ) See either 21 or [ for the proof. If

the infinite product of matrices

U = t U U0U1.t2 ... (1.7)k--10-k

converges, then

U*AU = A (1.8)

and the columns of U are a complete set of normalized eigenvectors of

A . We shall investigate the convergence of (1.7) for three convergent

Jacobi methods: (a) the classical Jacobi method, (b) the quasicyclic

restricted Jacobi methods (4] and (c) the threshold cyclic Jacobi method

(7]. Throughout the paper we shall restrict Vk to be of the form

= (i4k cos ek -e sin ek (1.9)

e sin ek cos ek)

By the classical Jacobi method we shall mean a Jacobi method with the

following set of rules for determining the Uk of (1.1). Choose Ak

such that

jak)J = l (1.10)ij = ,

and choose the Vk of (1.9) such that

a(k+l) = 0 (l.u)
ij

The equation (l.11) will always be satisfied if the relations

(k)
Ok = arg ajj (1.12)

tan 2e4 2 ak) )i (ek = e) (1.13)

3
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hold simultaneously. Since Jacobi dealt only with real symmetric matrices

A and orthogonal matrices Uk , the set of rules (1.10)- (1.13) consti- I
tute a generalization of his original method.

A Jacobi method is called cyclic if in every segment of

N = n(n - 1)/2 consecutive elements of the sequence (ik) every pair

(p, q) (1 i p < q ;9 n) occurs exactly once. This is a special case of

a quasicyclic Jacobi method with period K where the following condition

is imposed. In every segment of K _Ž N consecutive elements of the 3
sequence (Ak) every pair (p, q) (1 ;9 p < q -, n) occurs at least once.

We next define a restricted Jacobi method. Let bk

fying (1.13) and belonging to the closed interval [-n/4, n/4h , and let

S> 0 be a constant angle not depending on k . Then any method in which I
$k is chosen to satisfy (1.12) and ek is chosen such that,

sign 6,, sign Ge* , ei M j ~ j') (1 14

is called a restricted Jacobi method with bound * . In [4 it was I
proved that any quasicyclic, restricted Jacobi method with suitable 3
bound converges. Furthermore it is shown in [4i that, if A has n

distinct eigenvalues, any quasicyclic Jacobi method in which ek ,'Pk

satisfy (1.12), (1.13) and e* E[ - n/4, n/4h converges quadratically

provided the offdiagonal elements are already sufficiently small. More U
precisely, if 4nlk •5 d , then*

* Mr. E. R. Hansen has shown (oral communication) that the exponent in
the exponential function may be replaced by f•nKd-lp k

4I
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1 15334nKi d-14k
S 22 2

Pk+K 2 n(K - 1)e d-lk (.15)

where

d = Min INr - NcI

The threshold cyclic Jacobi method is a modification of the cyclic

Jacobi method due to Pope and Tompkins (71. It depends on the choice of

a sequence of positive threshold values tv(v = 0, 1, 2, ... ) such that

tV+1 <ttv holds for all v . A fixed cyclic ordering is adopted for

the nk ; ok always satisfies (1.12), and for each v , one chooses

"", for Is, (k Itv a)kk -- (11
0 for la(k)

, f lij I< tv

When all Iark) < tv (r 0 c) , tv is replaced by tv+l . Pope and

Tompkins prove that the threshold method converges if AM, td 0 . In

the present paper we shall take the sequence (tv) to be a geometric

progression; i.e., we shall assume

t-- =aqV (0 < q <) . (1.17)

2. NORMS OF MATRICES. In this section we summarize for convenience of

reference certain known results concerning norms of matrices. Let

H = (hre) and G denote square matrices of order n . The norm (cf.

[1)) of a square matrix H is defined to be a non-negative number

N(H) satisfying the conditions

N(H) > 0 for H # 0, (2.1)

N(cH) = Ic . N(H) for all scalars c (2.2)

5
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N(H + G) -_ N(H) + N(G) , (2.3)

N(HG) :- N(H) . N(G) (2.4)

This definition is equivalent to that given by Ostrowski [61 for his

"multiplicative norm." By (2.4)

N(H) = N(HI) - N(H) . N(I) ,
hence I

N(I) !- 1(25

for any norm. There exist norms for which N(I) 1 1 , an example being

the familiar spectral norm

N-L(H):j ax/x-*H*Hx"• (26

Note that for any unitary matrix U , N1 (U) = 1 . The Euclidean norm is

defined by the relation

n I
N2 ( H) -( 1 hl2) • (2.7)

r, -~

It is well known that, for all H,

I N (H)
r-7 1 .(2.8), _N2(H)I

Inequalities such as (2.8) hold quite generally. In fact, it was shown

in (61 that if N(H) and N'(H) are any two matrix norms, then

a(. N )<NH < b(NNI) (2.9)
N'(H)

where a(N,N') and b(N,N') are positive constants which do not depend

on H . It is easy to show that

6
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Max lhrcl , N1(H) (2.10)

and by (2.9) there exists a positive constant b(N1 ,N) , independent of

H , so that

thrcl - b(N1 ,N) . N(H) (2.11)

holds for all r and c and for any norm.

3. PRELIMINARY THEOREM ON INFINITE PRODUCTS. A sequence of n x n

matrices B 1, B2 , ... , BI, ... with Bk (brck) is said to be

convergent if a limit exists for each element of Bm . That is, if

lit b(m) = brc * then the matrix B = (brc) is said to be the limit of
m.,e

the sequence (Bk) . If the sequence (Bk) is not convergent, it is said

to be divergent. An infinite product

(I 4 EI)(I + E)(I + ES) ... (3.1)

of n x n matrices is here called convergent if the partial product

m
Pm = IT (I + Ek) (3.2)k=l

converges to a limit. We now prove the following

THEOREM 1. Let N(H) denote some norm of the matrix H . Let the

factors of the infinite product (3.1) be n x n unitary matrices, and

let the series EN(Ek) converge. Then (5.1) converges to a unitary

matrix U . Furthermore, for all m

N(U - Pm) ;9 c(N) I-- N(Ek) (3-3)
k=m+l

where c(N) > 0 depends only on N and n

• In defining convergence of infinite products of matrices in general, it
is necessary to exclude nonsingular factors in the product and also to
distinguish between singular and nonsingular limits. However, since we
are dealing only with unitary matrices in the present paper, it is un-
necessary to complicate the discussion with such distinctions.

7
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Proof: We first establish that if the sequence (Pm) has a limit U , 3
then U must be a unitary matrix. Let Pm = U + Qm . We have that

Qm* 0 (m * -) . Since each factor I + Ek is unitary, Pm is unitary

for all m .Thus 3
fP*Pm = I ; (U + Qm)*(U + Qm),

or I+ +

The right hand side of the last expression tends to the null matrix as 3
m * 0 , and this shows that U is unitary. Let r > m and note that

Pr - Pm = Pm[(I + Em+l) ... (I + Er) - I) . (3.4) 3
We shall prove that Pm has a limit with the help of the following

LE*A. If H1 , H2 , ... , Hp and G1, G2, ... , Gp are any two sets of

n x n matrices, then the following identity holds

HH2 ... Hp - GIG2 ... Gp 1 (Hi - G)G 2 ... Gp (3.5) 3
+ H•.(H2- G2)G3 ... Gp 4. ... + H,.... Hp_,(Hp - Gp).

The truth of (3.5) is easily established by induction on p . The I
details are left to the reader. Letting Hi I + Em+I , I = I and 3
combining (3.4) and (3.5) we have

Pr - Pm = Pm [Em+l + (1 + Em4 i)Em+2  (3.6) 3
+ (I + E m+)(I + EM+2)Em, + ... +(I + E a+l) ... (I+E r 1 )E]

Products of the matrices (I + Ek) are unitary, hence by (2.4), (3.6)

NI(Pr - Pm) •- Ni(Em4 1) + ... 4 Ni(Er) , (3.7) 3

83
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I
since the spectral norm of a unitary matrix is one. Now for an arbitrary

norm N , there exist a(N) > 0 and b(N) > 0 such that

ja(N) . N(H) ig N 1 (H) f- b(N) . N(H)

holds for all H . We have therefore that

Ia(N) . N(Pr - P _ Ni(Pr - Pro) (3.8)

I and

i k+l k=m+l

Letting c(N) = b(N)/a(N) and combining (3.7) - (3.9), we get

N(Pr - Pm) - c(N) - N(Ek) • (3.10)
k~m+l

I By hypothesis the series ZN(Ek) is convergent. Therefore, given any

e > 0 , there exists an integer g > 0 such that

i(Ek b(N) " (3cN)

We see from (3.10) and (3.11) that

3 N(P -Prm) < b(N) (3.12)

holds for all m It and for p--, 2, ... ; but (3.12) is precisely

the condition that

I I(Pm+-p m)rcl < e (3.13)

holds for all r and c by (2.11). Hence Pm tends to a limit U as

m * c . Finally letting r * c in (3.10) we obtain (3.3) and this

proves Theorem 1.

* The spectral norm N1 is fixed; hence, the a(N 1 , N) and b(N1,N)

of (2.9) do not depend on it. Therefore, for simplicity, we have here

written a(N) for a(Nl, N) and b(N) for b(Nl, N)

*CE9
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4. CONVERGENCE OF EIGENVECTORS AND ERROR ESTIMATES. We first give a

rather general result about convergence and estimation of the error in

all the eigenvectors. Following this we give estimates for the three 3
Jacobi methods considered in this paper.

THEOREM 2. L n x n Hermitian matrix A have n distinct

eigenvalues, and let the sequence of matrices (1.1) be generated by a 3
Jacobi method such that the angles Ok satisfy (1.13), every

Ok C-W/4, it/4], and such that the series 5
WI

converges. Then the infinite product (1.7) converges. Furthermore.

for all m > m. we have I

2 m d k=m ( I
where

w e ed Mi• n j xr - Xo l (4 .2)

and where mo is the smallest integer such that for all m > mo (

d

d'4 < • (4.3)

Proof: We shall make use of the fact that, for some ordering of tne

eigenvalues Ar of A ,

INr- arrI (k) (r - 1, 2, ... , n) (4.4) 1
hold for all k . The inequalities (4.4) follow from Theorem 1 of [ 4].

Note that, while (4.4) is valid for any value of k . the ordering of the I
10
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eigenvalues Xr is generally not the same for all k . However, our use

of (4.4) does not depend on the ordering of the Xr

Let the Uk of (1.1) be expressed in the form

Uk = I + Ek I

and let Ek - (e k" By (1.2), (1.3) and (1.9) we see that the 2 x 2

principal submatrix of Ek corresponding to Vk is given by

i(k) e Cos e /e ik i

e (k) ) eik sin Ok cos ek- ) (4.6)

Iand all other elements of Ek are zero. From the definition (2.7) we

get

N 2 (Ek) - (2(cos k -- 1)2 + 2 sin2 •k '-,

and with the help of some standard trigonometric identities, we obtain

N 2 (Ek) = 8/Isin -" (4.7)

By the definitions (1.5) and (1.6)

k 12 ; (4.8)

Hence, by (4.3) we have

_Lm dj mo)d (m > . (4.9)

I Using (1.6), (1.13) and (4.2)--(4.4) it follows that
2 1 a(k)

'tan 2 Ok 2i k aPk l (4.10)S_ k d d

I
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holds for k > m.. Hence, by (4.9), jtan 20ki < 1 and

j2 ekl < A/4 (k > ino) , since Ok E[,-.r/4, r/4] For these small angles

it is easily verified that. 4,tan (e0/)J tan 20 . Hence for k > m|

we have from (4.7), (4.8) and (4.10)

N (E1 5 - 1 tan 2I
N2(Ek) = 8'jsi 2-tan 2kl d k- " (4.11)

By hypothesis the series L converges. Therefore EN2 (Ek) converges

and by Theorem 1 the infinite product (1.7) converges. Now applying

(3.3) tO the case where N = N2 , we see from (2.8) and (2.9) that
b(Nj, N2 ) - I

c(N 2 ) - .. n-;5 (4.12)
a(N1 , N 2 )

Combining (3.3), (4.11) and (4..12) we obtain (4.1) and this completes

the proof of Theorem 2 . I

As before we let N denote the number of elements on one side of 3
the diagonal of an n x n mat rix, viz.

N -1 n(n - 1)., (4.13) 32 "

and for convenience we define

h I( - r,)2 (4.14)

We let [x] denote the integral par+ of x , i.e., the largest integer 3
not exceeding x . Finally we let a L [N/q 2 ] and we state our main

result as follows. I

THEOREM 3. Let the n x n Hermitian matrix A have n distinct 3
eigenvalues, and let the sequence of matrices (1.1) be generated by

12
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either Method (a): the classical Jacob. method, Me.thod (b): a quasicyclic

3 restricted Jacobi method, or Method (c)- a threshold cyclic Jacobi method

in which the thresholds t sat! sly (1.17). Then the infinite jroduct

of matrices (1.7) converges. Furthermore, for Method (a)

Nm(U - P Z ( Y (mo-h) (4.15)

I for Method (b)

3

( N2- P 4W g (m > P) (4.16)

5 where p is given by (4.23) below, and for Method (c)

- ) q[m/a] 1 (m
N2(U -Pm) -d 02No' l-q m), (.7

where in each case the integer m has the same meaning as it had in

3 Theorem 2.

3 Proof: It is easy to show that, for any step in a Jacobi method in which

the parameters ek, ok satisfy (1.12) and (1.1.3), the following equation

U holds

i Sk4I : Sk - 2 a~(k)12 (4.18)'9. '- S ij

In the classical Jacobi method we have

I aiajI~r Sk (4.19)

3 always satisfied. Hence

Sk÷j _ (1 - N-•')s k h (k O, 1, 2 ... )(4.20)

3 holds for Method (a). It follows therefore that

I

* 'S3
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S.oS (14 h + h' + .) = h (4.2)

k=O

hence by Theorem 2 the product (1.7) converges. By (4.20)
rn-1

holds for all m . For m > mo we may combine the last expression with

(4.1) and obtain the inequality (4.15). 3
Now consider Method (b). We note that 4k * 0 as k * • , since 5

a quasicyclic restricted Jacobi method is convergent. Since A has n

distinct eigenvalues, there exists a smallest integer p, such that I
Mini (Ie*I, 4•) Ie~I (k a pl)

and by (1.14) the restricted method behaves like an ordinary quasicyclic

method from the step p, on. There also exJi.ts a smallest integer I
P2 i P1  such that 4npk s d (k g p2 ) and hence (1.15) holds for k ; P2

Since the sequence (q) is monotone decreasing and Pk * 0 , there is a

smallest integer p. such that (4.3) is satisfied, viz.

q T (k ps) 3
and therefore (4.11) holds for k g ps . Finally, a smallest integer I
p4 exists such that

P k < 9 k !p4 (4.22)
where g is the coefficient of pk in (1.15). Now let

P = Max (P 2, P3, P4 ) • (4-23) I
For k k P we have that (1.15) and (4.11) hold, hence 3

14A3
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J•i 2 P+i+JK ,I 8

- ((pp+ g + gi'p1+g l p+ + ... )".,

~& 1 + + g S+x:- + S 4 -
p(V-+ + +")+1

dg -g~p P l-&g•'ý 1 -ggp+K-1

I and using (4.22) we get

l we combine this with (4.24) to oýbtain

Z 2 I(k) ;5 nK(4
k=p -d <"P•(

iNow combining (3.3), (4.12) and (4.25) we get (4.16), and since

gm 0 (m * ca) this proves the convergence of (1.7) for Method (b).

Turning our attention to Method (c), we see by (1.16) that Uk I,

lEk 0 whenever Is. )lt V so that a step in the process (1.1) counts

only when a non-trivial transformation is made, i.e., whenever

U

LOCKHEED AIRCRAFT CORPORATION MISSILES uid SPAC( DIVISION



I
I

a(k) I
I ( ik tv . We let the scalar a in (1.17) be equal to po so that

i o 'c Po - o - to (r c)

There may be no non-trivial transformations made at any given threshold

level, but if there are, we can easily bound their number. Assume that I
after the r-th transformation 4r < tv-i Then (

Sr < 2Nt2  (4.26)

and by (4.18)

sk+1; S - 2t2 (4.27) 3
holds for each transformation made at the v-th threshold level, since

jak), a tv . Combining (4.26) and (4.27) we see that I
S 9 2Nt2  - 2pt 2

r+p v-i v

holds after p transformations at the v-th level. Letting [x] denote

the integral part of x , we have that there are at most I
c V- 1t

V

steps at the v-th level, for 3
22r8 < 2Nt2-- 2 Lt-2  -' t2

< 2Nt2~ - 2• ( - t2

<2t2 1
so that pr+av <tv , i.e., the next threshold level has been reached. I

16AI
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SFrom (1. 17)

v= (V =1, 2,2...).

I We have proved that

Ss• 2Nt 2  (V= 2 ... ) ,

so thar, using (1.17)| ~~ ~ ~ S s-, •_(2..o)"'qv •

S 2a .O\ (4.28)

3 Now, since sit/s] ;9 t for all positive integers s and t , we may

write

km k=m Sk (4.29)

00

I Let i be one of the integers 0, 1, ... , a-i and let

Ik cy---,a- + i-+ i a
We have

3and since i < a , we have

ft = J + (1. 0 , 1, .. , -l) .

Thus we may write (4.29) as follows

ji=o sa(j + tm]1)

I
3 17
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and using (4.28) we have I
5 S' 4 a(2N~io)' q .o
kum ku J-

Finally, combining (4.1) with (4.30) we get immediately the expression

(4.17). Obviously, 3m
qWJ* 0 (mo),I

and thus the product (1.7) converges also for Method (c). This

completes the proof of Theorem 3. 3
5. REMARKS. If we refer to unitary matrices of the general type used I
in the process (1.1) as elementary unitary matrices then it is a

rather easy matter to show that an arbitrary unitary matrix can be 3
decomposed into a product of a finite number of elementary unitary

matrices. In [53 (footnote (5), page 8) Givens gave a proof that every I
orthogonal matrix with posl+' - determinant can be expressed as a 5
product of a finite number ementary orthogonal matrices. We shall

not give the details here, but a proof of the corresponding result on 3
the decomposition of an arbitrary unitary matrix can be constructed by

a method very much the same as that used in [3]. I
In spite of the result just mentioned, it is perhaps not without

some interest that we can use Theorem 3 to prove that an arbitrary

unitary matrix can be expressed as an infinite product of elementary I
I
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I unitary matrices. The decomposition is, of course, not unique. We

3 sketch a proof as follows.

Suppose W is any n x n unitary matrix. Let D be a fixed

n x n diagonal matrix with n distinct and real diagonal elements.

3 Let the Hermitian matrix

A =W* (5.1)

3 be diagonalized by (say) Method (a) of Theorem 3, so that

U*AU = D'

where U is the limit of the infinite product (1.7). The matrix D'

3 has the same diagonal elements as D but possibly with a different

arrangement. By a finite number of elementary unitary transformations

3 with Vk of the form, (:)
we can transform D' into D , so that

V*AV - D , (5.2)

3 where V is an infinite product of elementary unitary matrices. From

(5.1) and (5.2) we see that

3 VDV* = WDW* (5.3)

It is easy to show from (5.3) that W can be expressed as VY where

I Y is a diagonal unitary matrix, i.e.

Yrr = ei (r 1, 2, ... , n) .(5.4)

Since any diagonal matrix Y satisfying (5.4) can be decomposed as aU
SOO19
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product of at most n-i elementary unitary matrices with Vk of the 1
form

0 ei '

the desired result is established. I
I
I
I
I
1
I
I
I
I
I
I
I

20A3
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ABSTRACT

A method of syntactic analysis of declarative English sentences, proposed

by Bar-Hillel and Lambek, was operationally extended in such a manner that

the product of the analysis is a machine retrieval language. Syntactic

analysis thus becomes a recursive translation from the natural language to

the proposed machine language. This method is called "microsyntactic analysis,"

and the smallest meaningful linguistic units, or morphemes, of the retrieval

language are termed "microsyntactic indices."

A three-value storage logic was devised for storage and retrieval operations.

Various relations between syntactic strings and algebraic strings were de-

fined. A characterization of semantic correspondences in terms of algebraic

relations was proposed and is currently under study.

v
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ItINTRODUCTION

3 The first quarter of research on this contract resulted in a proposal

for studying word correlation in a sublanguage of English and presented

3 a method by which correlations could be computed for the given sublan-

guage The method of syntactic analysis conceived first by

3 Y. Bar-Hillel [5] and studied by J. Lambek [6] was arbitrarily extended

to a larger part of the language than intended by these authors. This

extension, termed by us "macrosyntax" because it provides a basis for

classification of lexical units into function-sets, may not be justified

on logical grounds; it was tiken only as a working basis for further

* research.

3 The second and third quarters of research resulted in a refinement of

syntactic analysis called "microsyntax." The chief advance consisted

3 in the abstraction of svntactic forms from semantic and/or functional

in 4 erpretations given them in the macrosyntax, and opening the way to

mathematical characterizations of syntactic forms and their construc-

tion. Microsyntactic indexing was also introduced, providing a means

for very fine semantic destinct ions between words whenever such inter-

pretations are desired by the analyst. Concurrently with these studies,

we made serious efforts to find number-theoretic analogues of syntac :c

3 structure in the hope that syntactic analysis could be accomplished cn

standard digital computers. In this we were only par'tally success'ui

and these efforts had been abandoned at the close of the third quar'er

A list of basic English words was abstracted from We 4 [7]. their

syntac+ic forms lis'.ed, and frejuencles of occurrence per m4'14on

L
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computed from data given by West [7). This list was computer-programmed

for future work; the program is described in the appendix of this report.

The fourth quarter of research has resulted in the conception and outline 3
of a storage algebra of microsyntactic indices. The most important result

of -.his work is the characterization of semantic correspondences in terms 3
of relatlons defined in this algebra. We feel that this characterization

gives us a firm basis for the derivation of a correlation function. 3

2U

LU
I
I
I
I
I
I
I
I
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Section 2

A GENERALIZED SYNTAX FOR L

In [3] we presented a method for indexing strings of words which are

analyzable in terms of a microsyntax of English. This method has been

generalized and is presented here in a more systematic form. In the

reference cited we defined heuristically the order of a syntactic form

as the highest number of strokes separating elements of the form. It

will be observed that forms of order greater than zero are constructed

by repeated application of left or right stroke functions. Thus, we

need only two mappings and the concept of order of syntactic forms to

characterize all possible constructions. In [2], when we defined the

microsyntax of L, we defined two sets of elements, A = (nl, sa, el) and

B = (n 2, S., e 2 ) , and constructed all elements of the microsyntax from

these sets by means of appropriate mappings. The indicial feature of

this method was extended in [3],and the method of microsyntactic indexing

was introduced. In the process of systematizing the method of syntactic

analysis originally proposed by Bar-Hillel in [4], we have abstracted the

constructive properties of the method and discarded the interpretations

of strings of these elements as "noun phrases,' "verb phrases,'^ ""sentences,,-

etc. These interpretations may serve a convenient classification purpose

in descriptive semantics, but they are meaningless syntactically. In

microsyntactic indexing, n and s serve an indicial function only, and

may be replaced by any convenient symbol. Let Z be the set of zero-

order indices. Indices of higher order may, in general, be either

entirely associative or non-associative between certain elements. We

denote by Xn the set constructed by n consecutive applications of the

left stroke function on elements of Z ; thus, X , is the set of elements

of the form a\b , X = (a\b\c) , etc. Similarly, we denote by Ym the

3
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set of elements formed by m successive applications of the right stroke I
function. All members of X. and Ym are first-order and entirely

associative. Forms containing elements which are non-associative rela- I
tive to a left or a right stroke are constructed from the sets Xn and

Ym • These forms are the second-order forms, and are in turn used in the 3
construction of third and higher order forms. We denote the many possi-

ble sets of second-order forms by ,and ni,,k, w X

or Y indicates that the left or right stroke, respectively, is the stroke

function relative to which the elements are non-associative; and the ele- 3
ments of the superscript sequence indicate the number of right or left

strokes, respectively, in the forms following the forms indicated in the

paired subscript sequence. For example, X1,0  (a\b\\c/d/e\\f)1

Y", C(a\b/ /c\d), Y1'- (a/b//c\d//e\f), X1. = (a/b\\c\d\e), etc.

Most of the possible second-order forms do not occur in practice; among

these are the forms which are non-associative relative to both stroke

functions. Where such forms should be necessary, and for forms of higher 3
order, it is notationally simpler to write the required sets in terms of

the left and right strokes, as was done in the above examples. A slightly 3
:aore cumbersome notation is to define the stroke functions as functions of

ordered pairs of sets (as we have implicitly done above), then write the

actual function as required, For example, an element belonging to Y1,1

would be written p[A(a,b), A(c,d)], wnere X and p are the left and

right stroke functions respectively, and a, b, c, d are all elements

of Z . Some convention must be used to characterize association between

elements; capital Greek letters, A and P , may be used for this purpose. 3
We require an identity element e e Z , such that 3

?,(e,a) = p(a,e) , a

where a is an element of any set. Sequences of indices are said 4o I
"reduce" to an index when any of the following sequences occur:

4I
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i X~a, b) X (b,c) X Ca, c)

A(a,b) A (b,c) A (a,c)

p(a,b) p (b,c) p-- (a,c)

P(a,b) P (b,c) = P (a,c)

where a, b, c are elements of any set. We define a "syntactic string"

as any order sequence of indices. A string is said to reduce to an index

when sequential pairs of indices reduce according to the transitive prop-

erty of the stroke functions given above. Conversely, an expansion of

any index is any string obtained by the converse application of the tran-

sitive property, providing the indices used in the expansion are members

of sets required for analysis of the language. In particular, if q is

any index, we denote by - q the set of allowable expansions of q

IN
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Section I

A STORAGE-DEPIWENDE ALGEBRA OF INDICES

The central idea in developing a storage-dependent algebra of indices is

the assignment of values to indices and algebraic strings of indices

according to the results of a storage-verification procedure. We call

the values thus assigned "s-values" for the indices, and denote them by
"0, . 1 I," and "B." It is assumed that the storage of Indices is a

continually changing storage, but that storage-verification occurs for

any fixed interval while the storage is static. The s-values 0, 1 are

interpreted to mean negative and positive results of the verification

procedures, while 8 is interpreted as the (intentional or unintentional) 3
non-application of the verification-procedure.

The stipulation of s-values for algebraic strings of indices is to some U
extent arbitrary, depending upon the purpose of the algebraic analysis.

Once this purpose has been clarified, t.hen the algebraic relations among I
indices can be defined in terms of assignments of s-values for the

primitive relations. For the heuristic reason that, for a sufficiently

large collection of sentences in storage, the negations of a large number

of words and phrases are likely also to be in storage, we define, for

each index p in L , an index -p in L such that the following con-

ditions of storage verification hold; if p = 1, -p = I ; if p = 0,

-p = 5 ; and if p = 5 , -p = 0 . The element -p is the antonym of p

in a descriptive semantics.

We define a binary relation D between indices of L in terms of +he

following stipulation of s-values. 3
I

6L3
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p q pDq

0 0 0

0 1 1

0 5 5

1 0 1

1 1 1
1 8 1

5 0 b

8 1 1
8 8 8

We also define a binary relation C among indices of L such that C

satisfies the identity pCq = - (-pD-q). From the definitions it follows

that pCq satisfies the following table of s-values.

p q pCq
0 0 0

0 i 1

0 b 0

1 0 1

5 0 0

5 1 1

8 5 8

Examination of tne s-table for pDq shows that

pDq = qDp . (1)

Further, from the definition for -p , we have

-(-p) = p (2)

7
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Using the definition for C and (1), we have I
pCq q .Cp ()

Through the s-tables, it can be shown that

pD(qDr) = (pDq)Dr , (4)

and it is easily proved that

pC(qCr) = (pCq)Crý (5)

Again through the s-tables, the following property may be verified:

pC(qDr) = (pCq)D(pCr) (6)

We have shown that, for the given stipulation of s-values the relations

C and D are commutative, associative, and distributive with respect I
to C I
AlgebraJc strings are linearly related to the stroke functions X and

• Let x, y, z be any indices such that, if a denotes either X or 3
P , a(x,y), a(xz), a(y,z) are all indices in L . Then we define:

a(xcy,z) = a(x,z)ca(y,z) (7)

a(x,ycz) = c(x, y)cc(xz) (8)

a(xDy,z) = a(x,z)Da(y,z) (9)

a(x,yDz) = a(x,y)Da(x,z) (10)

Since C and D are commutative, we have

a(xcy,z) = ct(ycx,z) (11)

( (x,yCz) = a(x,zcy) (12) U
c(xDy,z) =- c(yDx,z) (13)

We define 
a(x, yDz) = a(x, zDy) 

(14)

a(-x,z) = a(x.,-z) = - c(x,z) (15)

and show that this definition is consistent with (7) - (10).

8I
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I a(xCY,z) = a[-(-XD.-y),z]

a - a(-xD-y,z) - - [a(-xz)Ia(-y,z))J - - (.-a(x,z)D-a(y,z)] - a(x,z)OC(y,z),

and similarly for a(x,yCz). From (15), we have the identies:

I a(xCy,z) - a(-xD-y,-z) (16)
a(xDy,z) = a(-xC-y,-z) (17)

I a(x,yCz) = a(-x,-yD-z) (18)

a(x,yDz) = a(-x,-yC-z) (19)

Further, from (7) - (10) and associativity, we have

a(uCv,xCy) =

a(ux)Ca(uy)Ca(vx)Ca(vy) (20)

a(uDv,xDy) - a(u,x)I•a(u,y)Da(v,x)W(v,y) (21)

Indices containing both C and D are allowable if and only if all

indices in the resulting decomposition have the same s-value. To prove

this take, for example, the index a(uCv,x!)y) . We have

a(ucv,xDy) =a[-(uCv), -xC-y] = - a(uCv, -xC-y) =

- [-a(u,x)C-a(u,y)C-a(v,x)C-a(v,y)]

On the other hand, we also have

a(ucv, xDy) = a[-uD-v, -(xDy)] = -<a(-uD-v, xDy) =

- [-a(u,x)D-A(u,y)D-a(v,x)D-a(v,y)]

The two decompositions can be equal only if all indices in the strings

are either 0, 8, or 1 .

From the transitive property of the stroke functions, we have

a(xCy,z)a(z',u) = a(xcy,u) (22)

Since a(xCy,z) = cx(x,z)Cc(y,z), the sequence of indices must be dis-

tributive with respect to C and D ; thus

9
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c(xCy,z)a.(z,u) = [a(x,z)Cc(y,z)]ca(z,u)

a(x,z)a(z,u)CaxLy,z)a(z,u) = a(x,u)ca(y,u) -

a(xcy,u)

However, a(u,xCy)a(xCy,v) = c(u,v) if and only if x = y , and similarly

if C is replaced by D in one or both indices.

Using (2) and (15), we have

cr(-x,y) a (y,..-z) 6 a(x,-y) a (.-y,z))

[-,a(xy)] [[-(y,z)] = a(x,z) (23)

So far, we have not used any property of 6 in our results, and hence

the definitions and consequent properties of both algebraic and syntactic

strings hold for a Boolean algebra as well. An interesting application

of these results would be the analysis of the predicate calculus in terms

of this theory; however, we have only fragmentary results on this i
application, and shall not include them here. I

I
I
I
I
U
I
I

10
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Section .

SYNTACTIC THEORY OF DEFINITIONS

I It was proposed, in the first report on this study [i], to compile a

list of words to be taken as undefined and define all other words in the

general lexicon in terms of the primitive words. The novel feature of

our proposal was to define words in such a manner that the string of the

definition is an allowbble expansion of the syntactic form of the word

defined. This feature would permit free substitution of definitions in

the context of the words defined, and hence would permit correlation of

sentences. The theory of definition is the heart of descriptive seman-

tics, and it is in this area of research that any method or proposal for

word correlation must be conceived. As was indicated in [4], we have

encountered considerable difficulty in writing satisfactory definitions

within the proposed syntactic restrictions. A "satisfactory" definition

is simply a matter of the conscience and experience of the person writ-

ing the definition, and part of the difficulty lies herein--we have no

criteria for an acceptable definition. The other part of the difficulty

3�is that the theory of definition at this level is not properly a scien-

tific problem, even for those who choose to recognize it as a problem.

3 It is a philosophical problem in the present state of our knowledge of

human behaviour and communication, and subject to endless debate.

I The purpose of a definition in a natural language is to establish a

correspondence between a word and whatever the word names or whatever

function it serves in the language. The manner in which this purpose

is accomplished is by stating a correspondence between the word and a

collection of other words in the language, placing reliance on the human

interpreter to perform the actual process of naming objects of experience,
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and whatever other functions are required. Since the construction of a I
dictionary or thesaurus involves these complex human activities to a

sophisticated degree, and since in our present state of knowledge these 3
activities are so little understood, the proper objects of our research

are simply those correspondences between words and collections of words 3
which are already established in conventional dictionaries, rather than

"the construction of a new dictionary. We have limitations imposed by the

method of syntactic analysis, of course, and these restrictions will

induce changes in the precise wording of definitions. But we can study

the problems in abstracto, and the results obtained ought to tell us 3
whether any useful concept of word correlation is feasible. I
Generally, a definition is a correspondence between a syntactic st rlng

and a sequence of syntactic strings. We consider here the correspondence 3
between a single word and a single string, and write p * a for the

correspondence, where p is the word defined and a the string con-

stituting the definition. p denotes a set of indices each of which

stands in the given relation to the string o . Since we have no

criterion for substitutability of a in any string containing an index

belonging to p , the relation * is not an equivalence relation. We

define the equivalence relation between indices as follows: 3
p = a if and only if p * a and a * p ,

the relation holding for all indices belonging to p ,We define the I
relation * in terms of the storage-dependent algebra:

p * a =- pDa (24) 1
The relation * may hold for any two indices in L . In the thesaurusz

type of definition, where a word is "defined" in terms of a collection

of words, the relation holds between the word defined and each word in

the collection. From the definitions, we have the following table of 3
s-values for * U

123
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p q p q

0 0

0 1

0 8

1 0 1
1 1 1

1I 8 1

6 0 0
8 1 1

1 5 5 8

The first set of values reflects the fact that the semantic correspondence

between any two indices does not depend upon the storage of the indices.

Further, if q = a , a string, then the correspondence may implicitly be

in storage through the words in 5 , though a itself need not be in

storage.

The semantic correspondence relation has the following elementary

p * q = - (pC-q) 
(25)

ia(x,y * z) = ci(x,y) * ci(x,z) (26)

a(x * y,z) = a(x,z) * a(y,z) (27)

The form ax(x * y,u * v), if it should occur, implies x = y and

u = v ; this is easily seen by application of (26) and (27).

I The purpose of the three-valued algebra we have outlined is to provide

a basis for semantic correlation relative to a given set of correspon-

dences between words and strings of words. It is our intention to

define the s-value 5 in such a manner that it provides a numerical

I measure of correlation relative to the given correspondences. This

function will also provide a basis for semantic inference in L relal ive

I
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to that sub-language of L which is in storage. Our speculations 3
regarding the form of this numerical function center around statistical

properties of indices subject to the syntactic restraints of acceptable 3
strings and to the imposed structure of the storage algebra, Results

obtained at this time are too indefinite for inclusion in this report, 3

I

I
I
U
I
I
I
I
I
I
I
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Section 5

TECHNICAL SUMMARY AND CONCLUSIONS

We present in this section a su mmry of the more important technical

results obtained for this contract.

The subject of analysis is the English language which occurs in meaning-

ful discourse; in particular, the analysis of meaningful declarative

sentences. The syntax of this language was analyzed by the method pro-

posed by Bar-Hillel [5) and Lambek [6). The result was a sublanguage of

the original language consisting of sentences for which the method

applies and the words which occur in those sentences. This method of

analysis was extended operationally to include a larger set of sentences

for experimental purposes. This extension is termed 'macrosyntax* in our

reports.

One of the weaknesses of the macrosyntax is the ambiguity of association

in the more complex forms. For example, the form n\s/n can be taken

as either of the forms (n\s)/n or n\(s/n)o A resolution of this

ambiguity was found by defining two semigroups (A,/) and (B,\), with

A = (nl, sj, el) and B = (n 2 ,1 2, e 2 ) , then defining mappings which

carry cross-products of the two sets into sets whose members are the

non-associative forms. This syntax was termed "microsyntax."

It was then recognized that the indicial feature of the microsyntax could

be used to index words in context. Thus, nj, n2 , ninj, n 1\\ s, n 2\s 2 ,

sj, S2, etc. are all sets whose elements are words or strings of words in

the natural language used in particular sentences with meanings intended

in those sentences. This method of indexing was called "microsyntactic

15
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indexing," and represents a recursive translation of the natural lan- 5
guage into a machine language suitable for storage and retrieval purposes.

The analysis of the syntax of the natural language, with this recursive 3
translation into the microsyntactic indices, was felt to be an essential

part of the groundwork for word correlation. This is because the meanings I
of words depend upon their usage and functions in context, and a method

for preserving context while simultaneously permitting algebraic operations

with individual words was essential. We feel that microsyntactic index- 3
ing satisfies this technical requirement.

An algebra suitable for operations among indices in storage is outlined in

this report. A three-value algebra was chosen so that one of the values 5
could be used as a correlation function between -.xy pair of indices.

Relations between the stroke functions of the microsyntax and the algebraic I
relations were defined and simple consequences of the definitions were

derived. A characterization of the correspondence between a word and a

string which defines the word was proposed and defined in terms of the 5
algebra. This is felt to be the most important technical result of our

research, as it is through the analysis of these correspondences that the 5
theory of word correlation must be constructed.

To each word in the natural language there corresponds a set of microsyn-

tactic indices, at most one index for each occurrence of the word in the

material analyzed. In addition, each sentence which is analyzable in the

microsyntax is indexed. The storage can be manipulated at will using a

Boolean algebra; for example, various hypotheses could be constructed and 5
consequences of the hypotheses derived automatically by machine. However,

the technique of using a Boolean algebra presupposes a precise knowledge 5
of the contents of the storage, and when storage is large, the Boolean

algebra becomes impractical. An automatic program for word correlation 1
is essential as a guide for the analyst. If a correlation function were

U
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available its application would tell the analyst in which direction to

proceed in storage manipulation without reading out the entire storage.

In other words, the correlation function serves as a tool for plausible

inference; from the value of the correlation function in each particular

instance the analyst is able to infer the contents of storage and con-

struct the Boolean search function accordingly. These are the reasons

I we have chosen a three-value storage algebra.

It is unclear at present what form the correlation function must have to

be useful in the intended way. It must be independent of the cardinality

of index sets corresponding to words, yet it seems reasonable that the

function be related to the probability that a given word is in storage.

On the other hand, since we are seeking a semantic correlation function,

i we have no a priori reason to assume that probability enter the picture

at all. A scheme for computing word correlation similar to the simple

ideas originally proposed in [1] may serve the intended purpose, with

suitable criteria for substitution.

I
I
i
I
i
i
I
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Appendix A

WORD CORREIATION STUDY PROGRAM

General Description:

Given a list of words with their frequencies of occurrence in five

million words and the percentages of occurrence as different syntactic

types, this program will produce a readable list consisting of the words,

their frequencies of occurrence in one million words, and the frequencies

of occurrence as the different syntactic types. Where the percentage is

iunknown, the program will provide the number - 1111 1111 - 11 as an

indicative symbol that the word is known to occur as a certain syntactic

type but the programmer must put in the symbol in the desired location in

the output buffer. See Note 2.

The program requires all of first core and up to location 10240 of second

core. The remainder of second core may be used to enlarge the program or

make comparisons between the words and/or numbers associated with them.

Output Format:

Each 'page' is headed by the page number and five words. The syntactic

types are represented by numbers from 30 to 60, and appear to the left.

Each word heads a column of numbers, the first of which is the frequency

per million words, and the others, opposite the syntactic types,

represent the occurrence of the word as the various types.

Input:

Input to the program is by tape. For every page, the five words to be

printed on that page must be punched on one card in the following format:

19
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column 1 begin first word I
column 19 second word

column 37 third word 1

column 55 fourth word

column 73 fifth word 3
(Note: If the fifth word has more than eight letters,

start in the number of column to the left of column 75

that equals the number of letters greater than eight.)

e.g., a nine-letter word must start in column 72; a

twelve-letter word should start in column 69. If pos- 1

sible, words with more than twelve letters should not

be the fifth word on a page. 5
The numbers associated with every set of five words are punched on cards 1

separate from the word card. Using the standard VARAB or VARCAR format

(the same), punch the five frequencies, followed by the five percentages

for the first syntactic type, next the five percentages for the second

syntactic type, and so on. Zeros must be punched when a word doesn't

occur as a particular type. There should be five cards of numbers of

output desired, for each one card of words for each page. This is for

15 syntactic types. If more types are given, the argument word in

location 00131)B must be changed from 03 00005 00010 to 03 OOunn 00010,

n w number if octal, of cards to be read for each set of five words.-

Operation:3

Card-to-tape program deck I; card-to-tape 'data deck II! (the word cards);

card-to-tape 'data deck III' (the number cards). Place II on uniservo

No. 4J, III on uniservo No. 3; load octal program tape number. Output is

on uniservo No. 5. The program starts at cell 00250)B and should stop at

50453)B. The original program provides for 100 pages of output, or 500

words. For fewer pages an MJ to 05043B) should be provided at the end of I
20
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the number of pages required. This may be accomplished by an octal

corrector with the program deck, in which case the program must be card-

to-taped; or by a four-field octal loader corrector, which must be loaded

after the program tape (before program is started).

Notes:

1. The output buffer consists of an 84 word BUFF and 324 word HOLD. The

syntactic type symbols go to HOLD(+ Ow HOLD • 6, HOLD + 72, HOLD + 78,

HOLD + 84; HOLD + 96, HOLD + 102, HOID + 108, HOLD + 114, HOLD + 120,

HOLD + 132, etc. The numbers associated with these types are in locations

called HOLD + 61 through HOLD + 65; HOLD + 67 through HOLD + 71; and so on.

2. If the indicative number - 1111 1111 - 11 is desired, for example,

opposite type 31, under the second word on a page, then TP STAR HOLD + 68

must be inserted by programmer in 20 word buffer provided for that purpose

for each page before PREDIT is called to output the page.

21
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EFFICIENT ESTIMATION OF

REGRESSION PARAMETERS FOR CERTAIN

SECOND-ORDER STATIONARY PROCESSES

C.T. Striebel



FOREWORD
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under the same title, November 1959.
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ABSTRACT

The problem considered is that of estimating the single regression para-

meter k in the presence of a second-order stationary disturbing process

X(t) with rational spectral density. If the process

y(t) = kP(t) + X(t)

is observed in the continuous interval o ! t S T , a linear unbiased

-Testimate k of k is said to be efficient if its variance is asymptoti-

cally minimum among all linear unbiased estimates.

For known mean value functions of the form

2 at n i% t
0(t) = t e E 0 e a

efficient estimates are given for the two cases a = o and a > o . They

are shown to be economical of information concerning the spectral density

in that no estimate exists which is efficient for a wider class of spectra.

v
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Section 1
THE PROBLEM AND ITS BACKGROUND

Let x(t) be a second order stationary stochastic proces6 with mean

value function zero and covariance

Efx(t) xs-•] = R(t-s) ,

and suppose that the process

y(t) = kcp(t) + x(t) (1.2)

is observed for the continuous time parameter t in the interval

0 !g t ;g T . The function q)(t) is known, and the unknown parameter k

is to be estimated. This process can be thought to consist of a

systematic component kcp(t) , which is completely predictable except for

the unknown scale factor k , plus a random disturbing component x(t)

The problem is to estimate this scale factor from the observed process.

Only linear unbiased estimates will be considered, and they will be

represented as linear functionals

k = k [y(t), 0 _• t ý T) (1.3)

which are limits in quadratic mean of finite linear combinations of the

process y(ti.), i = 1, ... , N where the arguments ti are in the

interval 0 - ti g_ T . Such an estimate is said to be
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asymptotically efficient or simply efficient, for the problem 3
(qp(t), R(t)] if it satisfies the condition

variance IT i
variance IT * 1 as T * , (1.)

where is the minimum variance linear unbiased estimate of k com-

puted for the problem determined by the mean value function cp(t) and 3
the covariance R(t)Lo I
Interest in efficient estimates arises from the fact that the "best"

estimate 2 T is usually very inconvenient. If the estimate 2T is

represented by the linear functional 2T[y(t), 0 -9 t ;_ T] then it must 3
satisfy the linear equation

kT(R(t-s), 0 _ t -_ T] = MT•- 0 _ s ýg T (1.5)

where f is a constant to be determined by the condition of 3
unbiasedness,

(ii6
fT~cp(t)j 0 ;5 t ;5 TI - 1 .(1.6)i

For most combinations of functions q,(t) and R(t) it is difficult to 3
exhibit this solution explicitly; and provided it can be exhibited at all,

the solution usually depends on complete knowledge of R(t) and is I
cumbersome to compute. Efficient estimates are provided by linear 3
functional k which are in a sense asymptotic solutions to the linear

equation (1.5). 3
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U The principal alternative estimate, which has been proposed, is the

least square estimate,

.. T T()Pt jd
S= f �-�qty(t)dt/f (1(t)2dt)I 0

This estimate has the advantages that it is easy to compute and requires

3 no knowledge whatever of the covariance R(t) . Previous work on the

problem of efficient estimates has been primarily devoted to determining

I those combinations of functions (p(t) and R(t) for which the least

I square estimate is efficient.

3 For the Ornstein Uhlenbeck process, that is,

R(t) = e-ltl , (1.8)

and for mean value functions

(P(t) =tr or eOt (1.9)

I where r is a non-negative integer and X° is a real frequency, Mann

and Moranda in reference [10) proved that the least square estimate is

3 efficient. The author in reference [13] extended this result to include

mean value functions of the form

Cp(t) = tre-iNot (1.10)

I and showed further that for the more general function

"IIr ri?(at

IP(t)= E et (1.11)

I

* L3
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where the "a are non-zero constants and n > 1 , the least square 3
estimate is not efficient.

For a much broader class of covariance functions R(t) and essentially 3
the same mean value functions q(t) , this problem was first discussed

by Grenander in reference [3]. Further work was carried out by Grenander

and Rosenblatt in references [4) and (51. Rosenblatt considered some of

the same problems in the case of vector valued time series in reference I
(11] and extended his results in [12). Most of these results together 3
with some examples appear in Chapter 7 of reference [6]. In this work

only the discrete parameter case is considered, and the mean value func- 3
tion cp(t) is assumed to be "slowly increasing." This assumption

requires that the function c(t) be essentially of form (1.ii). All 3
restrictions on the class of covariances are imposed on the equivalent

class of spectral densities f(?) , which by assumption exist and sat- I
isfy the relation 3

IR(t) =i e"eitf (A)da (1.12)I I

for a discrete parameter process and 3
100 tR(t) =•re~f(A)d•(11A

for a continuous parameter process. Thus a problem [cp,R]. can be

referred to by the equivalent [(, f) . For positive continuous spectral 3
density and "slowly increasing" mean value function, a necessary and
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sufficient condition is given in reference [6] for the least square

estimate to be efficient. The condition, which is the same as that found

in reference [13] for the continuous parameter Ornstein Uhlenbeck process

and mean value function of the form (1.11), is that f(-N ) be constant

for a =l1 ...,In .

In Chapter 1.3 of reference [71 Grenander reproduces a few of these

results using the methods of Toeplitz forms. In Chapter 1.4, under

certain regularity conditions on f(\) , he extends his results to the

continuous parameter case fox the single example

cpt = 1 . (1.14)

With the exception of those in reference [7], all the above mentioned

results are derived for the more general problem

p
E[y(t)] E k ici(t) (1.15)

1=1

where the ki are unknown parameters and the (i(t) are known functions.

For p > 1 , the definition of efficiency used by Mann, Moranda, and

Striebel is different from that used by Rosenblatt and Grenander. For

the case p = 1 , both agree with definition (1.4) made above. In the

present paper only the case p = 1 will be considered though it is

believed that the results obtained could be generalized to larger p

using the methods and definitions of efficiency given by Rosenblatt and

Grenander.

5

LOCKHEED AIRCRAFT CORPORATION MISSILES and SPACE DIVISION



II

In the present paper f(N) is assumed to be a rational function with no 3
real zeros. Again it is believed that this requirement could be slightly

relaxed so as to include the case considered in Chapter 1.4 of reference 3
[7] though this has not been attempted.

Under these two limitations, for the continuous parameter process the 3
results in references [10], [1], and [7], mentioned above, are special

cases of the theory to be presented here. The continuous parameter 3
equivalents of the important examples discussed in reference [6] are also

covered. I

63
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Section 2

SUMMARY

i In the results summarized above it has been shown that in certain

3 circumstances the least square estimate is efficient for a large class

of spectral densities. It shall be the purpose here to discuss efficiency

classes of spectral densities defined as follows: For a fixed mean value

function cp(t) , a class of spectral densities P and a member f(N) of

I? , the efficiency class ;(f,cp) of the density f((A) in the class P

with respect to the mean value function p(t) is defined to be all mem-

bers g(A) of 7, for which there exists an estimate (not necessarily the

i least square) that is efficient for the two problems [(p,f] and [qi,g]

Thus for p(t) = 1 and a certain class of densities P , Grenander in

Chapter 1.3 of reference [71 shows that ?(f,q) = F for all f e F ,

since in this case he establishes that the least square estimate is

efficient for all members of his class •

Section 3 is devoted to establishing the efficiency of certain proposed

i estimates (2.10), (2.11), and (2.15). It is also shown that for questions

of efficiency the problem based on the process y(t) for t is the

finite interval 0 _5 t =ý T can be extended to an equivalent problem with

t in the semi-infinite interval - - < t _ T . This property is used in

i7
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section 4 to apply known results for the latter problem in obtaining a 3
necessary condition that a density g(N) belong to an efficiency class

T(fq) " I

The mean value functions qp(t) which will be considered are of the form i
r

cp(t) = 7, Z tpe-i t t (2.1)
),=1 j=o r;J

where r 7  is a non-negative integer, 7p and N 7 are complex, 3
ma= a ý_ 0 , (2.2) i

and (yr7 0 . The spectral densities considered are assumed to be

rational functions with no real zeros. For spectral densities of this

type, the solution of the linear equation (1o5) for the finite interval 3
0 - t 9 T is outlined by Laning and Battin in Chapter 8.4 of reference

[8]. However, this estimate ITtv(t), 0 _ t ;9 T) will not be used here, 3
since it will be shown that efficient estimates can instead be compared

with the much more convenient estimate kT[y(t), - < t ;9 T] I

In order to exhibit the estimates, whose efficiency is considered in

section 3, some notation must first be developed. The one-sided Laplace 3
transform,

O(N) e-l"t%(t)dt , (2.3)
0

of q(t) given by (2.1) can be written

83
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I m ry +1 4rj

7=1 j=1 T aN)J

where J = (-i)J+lj' j+l . Let r be the maximum of r among sub-
7j+1 7

scripts y for which -,Y = a , and indicate by a = 1, ... , n those

subscripts for which 4 (?_ ) = a and r = r . It will be seen that for

questions of efficiency only those terms of the mean value function whose

3 absolute value increases as treat will be pertinent. Thus the mean

value function (2.1) can in effect be replaced by

((t) = tr atreit•(ka) (2.5)

Ia=1

Using the method described by Doob on page 542 of reference [2], the

spectrum can be factored and written in the form

f(X) = IF(A)1 2 , (2.6)

3 where F(A) is a rational function with zeros and poles in the upper

half-plane, (X > 0) . By the division algorithm the quotient of

3 polynomials I/F(A) can be expanded as

3 = E(N) + M(k) (2.7)

where E(N) is a polynomial of degree e and M(A) is a proper

I rational function with poles in the upper half-plane, By proper it

3 is meant that the degree of the numerator is less than the degree of the

denominator. Similarly, the following expansions can be made:

I

* 9
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- l

where Ea (N) is a polynomial of degree e-l ; and, provided a >0 ,

)(X) is a proper rational function with poles in the upper half-plane. 3
Let

E(\)- = e 3j
3 ~ (2.9) I

e-1

m(t) = 3M(N)d
m,•(t) -L ' ei't"%(X)d a= ,-- n I

I
In section 3 the following estimates are proved efficient:

N k-[y(t), 0 • t • T; a > 0] (2.10)
n ei-XT[e-i (I

E e jE(-i)je - J)(T) + nmo(T - t)y(t)dt]
a=1 j=o aj

M k2 [y(t), 0 g_ t . T; a > 0 (2.11)

=e (_i)JeY(Tj)(T) + fT m(T - t)YT(t)dt ,

i=o 0 I

where

L E AI
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n (

YT(t) = E cxW+1 e --•(T t) f e ikOy(u)du ; (2.12)
c=:1 FT-a) 0

and

[y(t), 0-! t !5 T; a = 0 (2.13)

E fr+l f treifeaty(t)dt

In each case W denotes a constant to be determined so that the esti-

mate is unbiased. It is evaluated by replacing y(t) with cp(t) in

the right side of the expressions (2.10), (2.11), and (2.13). As the

notation indicates estimates (2.10) and (2.11) are efficient in the

case a > 0 , and estimate (2.13) is efficient when all the frequencies

a are real, that is, a = 0 . In order to compute the estimates (2.10)

and (2.11), k,[a> 0] and k2 [a > 0] , it is necessary that the entire

spectral density f(X) be known. Estimate k T[a = 01, (2.13), requires

knowledge of the spectrum only at the points -?a , that is,

f(-XC) a•= 'l, ... , n .

Results concerning the least square estimate can be obtained by letting

F(A) = 1 , for which expressions (2.10), (2.11) and (2.13) reduce to

the least square estimate for the equivalent mean value function (2.5).

11
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Section 5

EFFICIENT ESTIMATES

Since f(N) is a positive rational function it is clear that the 1
condition 3

-'log f (A) >- (3.1)

is satisfied, and hence by Theorem lO.12b of reference 17) the process 3
x(t) can be represented as a moving average

x(t) = f t y(t-s)dt(s) -• <t< (3.2) 1
- co

where t(s) is a fundamental random process with zero mean value and I
y(t) is the Fourier inverse of F(X) , I

7 (t) =-L e"tF( (.) I

Suppose there exists a function *(t) which satisfies the conditions 3
ttf y(t-s)*(s)ds = q•t) 0 9 t < 00 (3.4)

fa I*(s)I 2 ds < - all T < 
(3.5)-- 00

then the process y(t) can be represented as the moving average I
I

12
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t

y(t) = f y(t-s)dy)(s) 0 - t < o (3.6)

where I(s) is the process defined by

11(s) = k*(t) + t(t) - c < t < co (3.7)

Thus there are three processes which will be considered

I y(t) = kcp(t) + x(t) 0 _ t <

II y(t) = kt(t) + x(t) - -< t <-

III q(t) = k*(t) + t(t) - c < t < 00

The x(t) processes are second order stationary with zero mean value

and spectral density f(X) . The E(t) process is a fundamental random

process. The mean value functions satisfy the conditions

t
f y(t-s)*(s)ds = t(t) -o < t < o (3.8)

-- 00

*(t) = (t) o < t o

and condition (3.5). Their transforms O(N) , given by (2.3), (3.9)

Z(X) = f e-ixt (t)dt , (3.10)
- 00

and

J(A) = fo e-iktý(t)dt ,(3.11)

are assumed to converge to proper rational functions in some non-degenerate

strip. They satisfy conditions (2.4) and from (3.8)

Z(N) = ý(\)F(\) . (3.12)

13
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The integral equation (3.4) can be solved using Laplace transforms and 3
the Wiener-Hopf technique, (See, for example, page 313 of [141.) Taking

two-sided Laplace transforms of equation (3.4) yields the equation I

ID?)+ H(A) = f(A')F(?A) (3.13)

where

H(?) o f -ixt ft (t-s)(s)dsdt • (3.14)

Solving (3.13), the transform J(?,) must satisfy N
j(?) IN)+ (A(3.1-5)3

The integral ¢((7) , (2.3), converges in the region 49(X) < - a . In

order that the Laplace inverse of J(X) in (3.15) exist and satisfy

conditions (3.4) and (3.5), it is sufficient that H(N) be a proper

rational function with poles in the region ,.(X) < - b for some

- b < - a and that J(?,) also be a proper rational function. Such a

function H(X) can be found, for example, as follows: Let D%(N) be 3
any polynomial with zeros whose imaginary parts are less than - b

By the division algorithm the rational function 0(A)Da(?) can be I

w( X)D H ( N) = Q ( ?) + R ( N) , ( 3 . 1 6 )

where R(X) is a proper rational function and Q(X) is a polynomial N
of degree equal to that of ¢(A)DH(?) -that is, the degree of the I

numerator of ¢(*)DH(?) minus the degree of its denominator. Since 0(0)

LCE A
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is proper, the degree of Q(\) is less than that of . Now define

H(-A) by

(3.17)

so that

H(N) + O(N) = R( . (3.18)

By taking the degree of DH%() larger than e , the degree of I/F(N) ,

a proper function J(X) is obtained. From (3.12) Z(A) can be defined

by

Z(A) = + . (3.19)

Thus, given a process I, the existence of processes II and III has been

established.

In reference [9], Mann has solved the problem of estimating the parameter

k for the process III. The minimum variance linear unbiased estimate is

given by

T
-T[c(t), o< t -_ TI = -f 'tTdj(t) , (3-20)

and

variance [j(t), - < t 9 TI = 1  00 (t)I2*t (3.21)

15

LOCKHEED AIRCRAFT CORPORATION MISSILES and SPACE DIVISION



I
I

The remainder of the section will be devoted to obtaining approximate

expressions for the estimate (3.20), which are more convenient but are

still efficient for the problem. The efficiency of proposed estimates

ff[a > 0], S[a> 0] , and VT[a = 0] given by (2.10), (2.11), and (2.13)

is proved in Theorem 1. However, before this is done, a non-rigorous

derivation of the estimates will be given by way of motivation. I

First equation (3.6) will be solved for dj(s) by transform methods.

Since the poles of F(W) are in the upper half-plane, its inverse trans-

form y(t) vanishes for t < 0 . Thus the process y(t) can be written

y(t) = j y(t-s)dn(s) , (3.22)
-00

and

fT e _ity(t)dt = f ef T f y(t-s)dl(s)dt
-0 -00 -00I

=- fT Ifp e -iN(+s)y (U)d- Idq(s)
00 -00 (3.23)I

= F(A) fT e-iNsdq(s)
- 0

Substituting the Laplace inversion formula for both j(t) and dj(t) 3
in formula (3.20) gives the alternative form for the estimate

I
I

16
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(21x) ~ -- i 7(]N

_+id e -- T
e - ( f -i Uy(u-du) itI L~~-+ODidT L e~w - U)dd.]

3 where c is in the region of convergence of the integral J(X) in

(3.11), b> c> a ; d is taken in the interval 0 < d < c where the

mean and variance of the process fT e-iWt y(t)dt and the integral
T (iw+i• )t -

dt are all finite. The notation F(A) indicates that

complex conjugates of the coefficients in the rational function O(N)

are taken.

The most important change that will be made in (3.24) is truncation of

y(t) for t < 0 . Thus (3.24) becomes

-+id fT (W) T -

32[y(t), 0 t 5TI (f e- y(t)dt]dw (3.25)

* where

4w fT( c 1 T(iw+fN) [0 74h + H(-?ih) ]00-__.ic i( +k . • -N)

__________(3.26)
= T e iWt (t)dt

3 ,17
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Additional changes in the estimate (3.25) are made by expanding I T(W)

as a sum of residues at the poles of o(N), H(N) and I/F(A) and then

picking out those terms which dominate at T* - . When terms of

I T (W) are omitted, the complex integral (3.25) will in general cease to

exist in the common sense. :t must be replaced by a Ceas~ro limit of

order e + 1 . This limit is defined and its important properties are

stated in Theorem 2. The final estimates kl[a> 01, kiIa> 01 and

k [a = 01 given by (2.10), (2.11), and (2.13) are then obtained by 3
interpreting the resulting Ceaslro limit as the Laplace inverse of

appropriate functions of y(t) for 0 _ t ' T . I

The simplification of T (w) will be different for the two cases a > 0

and a = 0 . If a> 0 , the dominant terms of fT(w) have magnitude 3
Tre(a+w) . They are contributed by the poles of 7(-?), ? = x•e -1,

and are of the form

T r n TW+l eiT(wa)3

Making this substitution in (3.25) gives the estimate

TkMT[y(t), 0 9 t 5 T; a > 0I

rc~i 1W Tc -it ] (3.28)
=1 f n rC+1 e e A~) &

-- +id F (- W7 ) F [

(c,e+l) a

1 I18
I
I
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Estimates (2.10) aod (•'.ti ) are two uiightly di'firrtit interpretations of

this Ceasaro limit an u Lupluce Itiverse. The exi8tence in quadratic mean

of the derivatives of y(t) involved in estimates (2.10) and (2.11) can

easily be established. In order to show that (5.28) itself provides a

bona fide estimate, it would first have to be shown that the Ceasaro limit

involved exists in quadratic mean.

In the case a = 0 , the magnitude of the dominant terms in the variance

I 2r+1 T
of k is T . They are contrIbuted by terms in M (•) of the form

T niT(Nw)

U= ((-) )__Aar_

In this case the dominant terms in (3.25) are the residues at the poles

•=-N a0, which are evaluated simply in the estimate k [a = 0] given

by (2.13).

Theorem 1. Let y(t), 0 !5 t !5 T , be a process of type I where x(t)

is a second order stationary process whose spectral density f(A) is a

rational function with no real zeros, and the mean value function P(t)

is of the form (2.1). Then for a > 0 , the estimates

[k1 y(t), 0 O t s T; a > 01 and k2[y(t), 0 g t ! T; a > oi given by

(2.10) and (2.11) are efficient for estimating the parameter k. If

a = 0 , then estimate k T[y(t), 0 •_ t ! T; a = 01 given by (2.13) is

efficient.

19

LOCKHEED AIRCRAFT CORPORATION MISSILES and SPACE DIVISION



Proof: Since any linear unbiased estimate based on process I I
(y(t), 0 - t - T) is also a linear unbiased estimate for process III 3
(q(t), -- < t _ T), it follows from (3.21) that the inequality

variance kT(y(t), 0 t g TI • 1 /1,T I0(t)12dt (3.30) 1
must hold. Thus it is sufficient to show that the limit 1

( [variance ][fT i*(t)1 2dt] * 1 as T 3

holds in order to establish efficiency of an estimate kT . The remainder

of the proof is devoted to obtaining asymptotic expressions for the

quantities 0T I*(t)I 2 dt , T, and variance Tk-T computed for the three 3
estimates considered. The notation

A BT (3.32)

will be used to mean

A I as T 
(3.33) IBT

In addition to the standard Laplace transform inversion formula, the 3
following result due to Amerio [1] will be used:

Theorem 2. If the function cp(t) and its first n derivatives are

absolutely continuous in the interval 0 9 t _ b , then the derivative m
T(n)(t) satisfies the inversion formula I

I

20
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(n I~i e ~ ixt iN 1 i .2 i .N a!,! t i L f (l) 9(-4

R 2 +ic R •nli
•(n(t) = lira - f (ix)nei t¢(k)(l - --• d _ a _~ (.

where 0(N) is the transform of cp(t)

O(N) = f' e-itcp(t)dt (3.35)
00

and the line = ic is in the strip of convergence of this integral forON OO

In addition, if ¢(D) is a proper rational function, the Ceasaro limit

(3.34) can be evaluated by the contour integral on a path C around the

poles of 4ý(?ý) above ic if t > 0 and below ic if t < 0 ,

I +R+ic n e it 2 ?n+1 n i~t

-R+ic

From the Laplace inversion formula
IT 1 T 4o-ic 4,c-icI

- li(t)12 dt =T21 T_ -oofic -c-fice(+iw)t (X)j(-w)dddt

(3.37)
1 4--ic 4--ic eT(iN+iw) (D)+H(7•-J

- co-2-7_0fic -0f c -ic AW ()ý d

The complex integrals are taken in the region of analyticity which

separates the poles of (?O/F(X) from those of H(N) These integrals

can be taken as contour integrals closings them upward around the poles

of •<)/F(X) . Examination of the residues at the poles of 4(N) and

21
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of i/F(X) shows that for large T , the dominant terms are contributed

by the poles with minimum imaginary part and among these, by the poles

with maximum order-that is, by '--a, a = 1, -. , n . The residue of 3
H( )/F(X) at poles of O(N) is zero, so the asymptotic expressionT( 2 e) TT(ix+iw) -(N- I

f is(t)t dt - w) d X dw (3.48)

is obtained, where the contours include only the poles X=-Xa and

W = k(, a = 1, "'', n . Evaluating this integral for a > 0 and picking 3
out the terms of magnitude T2re2a , gives the asymptotic expression

,(t), dt _ ' 2 e2 a n n 1) Crr+l 0 r+l . .

-0 r'.2  a=' 0=1 i(T3-'X a)F(-N a )F(-N 13)3

This can be summarized by the form3

f TI(t) 12dt - T 're C(T) (3.40)

where C(T) is bounded from above and away from zero. This is clear

because C(T) is a positive definite form in the vector I

Or+le a n (3.41)

whose terms have finite positive absolute values which do not depend on

T . For a = 0 , terms of order T2 r+1 dominate and asymptotically I
the integral (3.38) becomes I

223
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T II~t d T Ii n Ir+l 12

GoT rir(t)j(dt ~ 2r+l) zt rl f(; ka) (3.42)

For a > 0 , MTia > 0 1 can be evaluated from (2.10),

>e [e (-i)je q(J)(T) + f m (T-t)(P(t)dt] .(3.43)

II i aj-o 0o

From Theorem 2 this can be written

] =r> _L n +3CJT4+ic iXTre-iil•~~MT[a > 0 ] E••l z eid +•f ek [El (_i)Je j(iA~w(o

2 =a -0-i c  Lj=o

Ic+ MI(N)a( c,e (3.44)

1 4oa+ic n eiT(?a+•)(E (?) ÷ 1C)

I- ic ='a
(Ce+l)

3 From (2.8) this becomes

4I0+iC n T eiT(a+A3 :[a> o] 0 =-L f O(N) z ) • (3.45)
-00-ic a=i F( - (x4•)F( )
(c,e+l) a a

I This can be evaluated by a contour integral. Only terms of maximum

5 order Tre2aT are retained,

_T_____ ar+1 r+ iTR(?ý0a)
(i)r+lTreT = A.7 eT1

r a- a=-l (3.46)

SApplying Theorem 2 to (2.11), the same expression is obtained for

2[a> 0 ] .

* 23
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Next, variance oh7,[ >0 will be computeci for estimate (2.10).1

variance M k (a > 01

n nITý X 1T( 7
E E eE E (-i le 

I~) T + du
ell[iEe x ()(T) + T mx v-udv]

cxj~ 13 f )dM I7

n 1 eTctfe-1 k j k3

a=l f3=l 13k 21U ývk u=v=-T

e-1(ie T
+ Ef- e, mJT WYVa!Ru-) d

e-( k- Td

+ iko '3kom(-)ý I~uv= d

+ fT f Ma(T-U)-M;(T=v) R(u-v)dudvl
0 0J

a=1 (3=i 2 v 0
(C. e+i)I

E (i)o(i)k e I
e-i T-___

+ E (-i) Jef M;(T:;)7 7 ix (U-V)I dv

+ em(TujýLe u , f f m (T-u)m (-~"UvduidvjdXk~o Ok C cc Iv~r k e aI

24
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In n XE= Z e'-i_.f f(A)[E (A)e

a=L13=1 21t a

+ fI m (T.u)eiu] E[I(X)eiXT + fT m,(Tv)e iAv]dXS0 a o

The factor in the square bracket will be examined in detail. Using the

substitutions

iAT 1 4e--id B (N)elrPT

e2- (iAp
-2-id X)

(a (Ce+L) I (3-4)

T iXu 1_ -id e ?a(p)
f m (T-u)e du = _w f (iP-iX) dp
o0 a2. -id

where d > 0 , and (2.8); the bracket can be written

Ra(A)eXT+f7m,(T-u)eiXudu f (dpIX0---id ((p)eiPT

er+il dp.

-2o-w-f-id F(-N )(p4%)F(p)(Ip-IN)
(C,e+l) a a

Let 13' "''' k be the zeros of F(p) . By assumption 4o7 > 0 . The

aentour in (3.49) will be closed upward around the poles p = X, -:-,

I f8, "'', •k and evaluated by residues,

ElE(X)eiAT + f m (T-u)e iAUdu

tcar+l -eiAT e1'jd" C?. + 6v T, Tei (3.50)

I- cd -(X4+X)F(N) F(-.% )(7T (0' -X4)

1 25
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8unuation on y, 68, and v is understood. The constants C vill

not be explicitly evaluated. Making the substitutions (2.6) and (3.50),

the integral (3.47) can now be evaluated,

variance Mkl(a > 03

n n Oar+l pr+l 1 _ F(_)FX) 1______-__

F(-N )F- CN47 F(X?7.7

a (C,e+l) L N)XX

eiT( c7a) C C -• eiT( 7 7Y) (3.51) 3
a-K ) ý a I

-,,8' iT(X ,) 8 iT (,-+ )

+ C'817 ,,. + Y'va

C 1 e-iT(xrt') c T'eiT('307)

a a J8VT- y ba -F(-:ýa)(%+-A)(0Yr-X) F-'G( •-A-0 )N 4(pyr-,A)v

Examination of the residues of each term shows that, with the exception I
of the first, all terms contain one of the factors e

ei ' eiT(.7 ) . or eiT( P) . Thus they go to zero as

T Hence, the asymptotic expression, 3
2aT n n +lTor+l

variance M [da> 0l '-e ___1_1_, )(-I (-2

26
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I is provided by the first term of (3.51). Computation of variance

Mk2[a > 01 for estimate (2.11) is entirely analogous and yields the

same result.

I
Asymptotic expressions (3.39), (3.46), and (3.52) can now be combined to

compute the efficiency of estimates (210) and (2.11),

variance kT[a > Oi fT Ii(t)l 2dt (3.53)

= (variance MkI'T a > 0 ] (fT 1*(t)i 2 dt)

I M-T[a > 0312

Next, M T[a = 0) will be computed from (2,13),

n ar+J.(. 4
M[ia o01 E f T t reixat• (t)dt (3.54)

n -- r+m ¢ +•-ic ftre ioi~dtE r+l E *ftj Lo t dtj0

Sa=1 Y= j=1 21T -c-ic 0% +'X )j

rni - i ( j+VB
7 fr+l i Ttr(it)-eidt

ce- Y=1 ~j1 a' (-) ! 0~f..\~N

The dominant terms are for y = a and j= r + , so that

.r, "T 2r+l 1 jpi 2 (3.55)
M~a =01~ r!(2r+l) af(-) )355

3 27
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For estimate (2.13) the variance can be computed as follows:

variance M Tk Ta = 0]

n n ýDrUr+A 5r+l rT rT r rei)au-ih•V (u.56)d1
f (IN ff- ufv(e R(u-v)dudv

- aI In n $0 =4 1 (D r+l 1 00

a--i 0_1 f(_af_• 2_1fx )

fT flT ur v re icu-0v+iuX-ivXdudvj I
Sn - 00

2=:L •- 1 a r +1 r-. _ -- ff )

F iT(A+Xcz)Tr-Jr!(-l).J r!(l) r+]'

=o (ikcli?) "•a(r-j) Ia

[r e-iT(N+NP)Tr-Jr; rI

Evaluating each term by residues, the only terms of order T t4l are

the cross product terms for a = 0 o The contour must be deformed I
around the poles and thIn closed upward for one cross product term and

downward for the other. Thus only one of them contains the pcles of

interest. As before, the poles of F(X.) and T(N) will contribute 3
iT( }+\() wee aeteplso

terms containing the factors e where are the poles of

F(N) and hence -4(71)> 0 , so that terms of this type are asymptoti- 3
cally negligible. Thus the asymptotic expression becomes

I
28 1
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variance M [a ol0

In 11,r+l1
2  n Tr.(iT)J+r-r) 2(_i)5

E ar. ]- if (-.N ) E. Tir+J+i( L (3.57)

C ii e [prfe(-sNs ) , a jao (j+r+l), it ir-j) a
=T2r+l nJDcrl1

2-+ C=1 f(-N )

Combining expressions (3,42), (3,55), and (3,57), it is seen that

3 estinate (2.13) is also efficient This concludes the proof of

Theorem :.

SCorollary 1. Under the assumptions of Theorem 1, it follows that

AT
variance k T[y(t), 0 L t g T] 1 as T (358)

variance k [y(t), - c < t !5 Ti

Proof: In the proof of Theorem 1 it was shown that

(variance kT[y(t), 0 _• t • Ti) (f l*(t)1 2dt) * 1 (3.59)1 -cc

and hence

variance AT [ý(t), 0 6 t - Ti variance kT[y(t), 0 - t : Ti

^T AT
variance k [y(t), - oo < t _5 TI variance k [ý(t), - oo < t - TI

S(3.6o)
(variance T[y(t), 0• t • T]fT Jr(t)I

2 dt) * 1

Corollary 2. If a linear unbiased estimate is efficient for process I,

then it is efficient for processes II and III.

Proof: This follows immediately from Corollary 1.

l29
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Section 4 3
EFFICIENCY CLASSES

In this section a necessary condition that a density g be in the

efficiency class "F(f,c) will be established I

Lemma 1. If there exists a linear unbiased estimate f that is 1
efficient for either problem I or II, then it follows that I

-o bT a- T 12d * 0 as T oo (4.1) 3

where j
KT(N) = k-[ei - ( tt ; T) (4.2) I

T e -iýtý(t)dt (4.3)

b T T (;ý 12 (4.4)

and

a T IF(X)K (?.)l 12. a (4-5)
- 01

Proof: From reference [23 page 534 it is clear that the linear estimate

k- can be represented as 3

3o I
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I

< tkTey(t) - < t T[T'T]fceitz (N)d?.
2 -cG

+-J'ei'tdz(X), -. < t - T (4.6)

2v - 00 T

k1 1'KT()ZT( +) KT(N)dz(N)
= k -00 -f0

3 where dz() is the spectral process of x(t) with E(Idz@\)j2 ]

f(X)C)d I IF(;N)is given by (4.2), and T by

zT(N) f Te-ie t %(t)dt =- T(N) + H(X) (4.7)

Unbiasedness of the estimate implies that

-L~ f' KT(A,)ZT(N)dh 1 (4.8)
- 00

I The variances of the estimates IT and 127[1(t)] are given by

3 variance k = • 00 0c 1KT(\)If)dA (4.9)I ~l T1I 00 1 KTo\)F( )I N

I and

,/variance k T[ r(t)] = _f iTi(t) l2dt T 2 _) i ( dj (4. 10)II
5 Applying the argument used to derive equation (3 23) to equation (3.8),

it is seen thatI
* D31
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I

From Corollary 2 the estimate k is also efficient for process III, soSthat __ _ _ _ __ _ _ _

t a bT = variance k-T[(t), - - < t ;9 TI * 1 as T (4.12)

I variance kT[n(t), - - < t *s T]li

The result can now be derived as follows:

T 12 oro - ______l\TyT(N)(~]
fa T-L bT aT "TibT I

(4-~ 13)
(Tj (2 T 2

$T 'z- a~b T

a~ab
I

Lemma 2. If there exists a linear unbiased estimate that is efficient 1
for either process I or II and for the two problems [•(t),f(?ý)] and

[C(t), g(ý)]; that is, if g E P(%,f) , then

T (?,GP) a~ T()T F(?ý.) 23

T a T0*0 as T. (4.14)
bF FbG

Proof: From an elementary inequality, it is clear that

I
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Since G(') a(X) a .r tio f(?)F 2

re bone IGT) a T

F -F
-• bF aFb F

(4.15)
1Ft2(.0 + I a.GF(X) (N)G(?,) 12I5 2,f TGe 2a( r T G T.18

b G aG

Since G(A) and F(r) are rational functions with no real poles, they

are bounded

IG(A) ;5 M
(4.16)

4~ CF(A) or C m.9

for XE real and hence

4 T-.. a. T
-~ F aWb

I { 2f 1 () KT \) (') 2 T ')2 ( ) _ KT ? G( )(4.17)

3From (3.4o) and (3.42) 2 a2+

I(bT) 2 - T e aCF(T) or T ~C (4.18)

where C(T) is bounded from above and away from zero. From efficiency

aT *1 so that

T T-2r e-2a T-(2r+l)
a. C(T or ,C(4.19)
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Thus the expression I
aT 

20)

__/ c r(T) F (

is bounded and the result follows from Lemma 1. 1

Theorem 3. If there exists a linear unbiased estimate that is efficient 1
for either process I or II and for the two problems ((),f(A)] niid

[c (N), g(N)] ; that is, if g e g4[,f] , then (i) if a > 0 , it

follows that 3S- - IN~
i)n eiT4A n 15 e'ICr

m Gr(ý?X ) (%+N)( T (~)k') Q=0 -A))
a asT* I

and (ii) if a = 0 ,

F(- a)= = 1, a"', n (4.22) 1
vhere C1  and C2  are constants. 3

Proof: (i) For any sequence Tn there exists a subsequence Tj, and U
complex numbers 9, such that

iTje a * .. as j** , c =, .. , n. (4.23) 3
For this subsequence, it follows from (3.27), (4.18) and (4.19) that

I
I
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ab(3 4N XF (
TFi

SI _r ieT"aT

I 
-F(T F(?'A) cZl ) -

I ~' ("4c F(4i) C0 a

3 From Lemma 2 this limit must be identically zero.

I (ii) For a = 0 , the integral (4.14) will be evaluated. Making the

Isubstitution @T( = zT( /F(A) fo *(A) anT() this becomes

IF aF bG
G jkl) Tt( 2 (4. 25)

I n

It is clear from the discussion in section 3 that the extension of q,(t)I to 3(t) depends only on the degree of F(n ) and hence the same exten-

iusion zT( A) will do for both F(f) and G@N) • The function Z(e) will

be evaluated by closing the contour in the integral

I
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I
I

+0 +- ic (iw-iA)T I
(f (i ) [4(w) + H(w)dw , (426)

upward around the poles of 0(w) and w = X and computing the residues

T m -NeiAT I
7=1 J=1 (j0l), uj'-" (W.-) =-

(4.27)
r +i

Y•x •=1. J=1 (AJ

-- i e-iNT 1
e j'T CiT) k eiX 7 T

+ k_- 0-o m,;k)( ) )J-k ("-+k)!(-1)J

Since bT T Q' C terms of magnitude T2r+1 mst be found in

(4.25). Terms containing the factor H(A) will not be of this magni-

tude. Thus making the substitution (4.27) in (4.25) 3

b T Tb T 
I

F aG

(OF rill ra+i (_.28)

Fb Tj 7ý E ~ ýiY bi ,..c 0

FI
T6 T

aLbE 12[RA 1 -'AT ORATN(iT) i ..k e DVSO

+ e

LAk+A 6 )+1 SI ;+A5)-
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Terms of maxiimun order are obtutdud whei y = 6 = u .uvd I. = J = r + 1

for the cross producL terjns. Thu contour m~y b(. de1tormud downward around

the poles at A= - A ( l, -.. , n . Again the poles of

_ G will not contribute terms of maximum order.

Evaluating by residues,

T nTb
b F F I-G (4.29)

,i ( ).=O ( )£tIarl IF ,CF cI-( -i tCFN a 1  a)1  CG o

21( nGna CF F( -?A) 2

(2r+l)(r')! a)1 C-G' cc

From Lemma 2 this limit must be zero, and since otr+j 0 , it follows

that (4.22) is satisfied.

In the case a = 0 , it is clear that the estimate k T[y(t), 0 -s t 5 T;

a = 0] given by (2.13) is efficient for all densities g(A) which

satisfy condition (ii) of the theorem. Thus condition (ii) is a

necessary and sufficient condition that g(A) belong to T(f,p) , and

the estimate (2.13) is economical of information concerning the spec-

trum f(N) in the sense that there exists no linear unbiased estimate

which is efficient for a wider class of spectra.

37
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In the case a > 0 , the theorem states that if there exists an estimate

that is efficient for [q(t),f(A)] and [((t), g(A)] on a sequence Tj

for which condition (4.23) holds, then the spectra f(X) and g(N) are 3
related by

C ar+la 1 =+ (4-.30)

For n = 1 or 2 it can be shown that this implies that g(X) = Cf(X)

and hence that estimates kty(t), 0 g t g T; a > 01 and

-~y(t), 0 S t _ T; a > 0] given by (2.10) and (2.11) are economical in

the same sense stated above for kT[y(t), 0 - t - T, a = 0] . However,

the economy of estimates (2.10) and (2.11) is of little practical interest 3
since it is very unlikely that the function

1 a ___D

E Q+l a (4.3)
a a

would in practice be known if the function F(X) were unknown. This is 3
not the case for the estimate f[y(t), 0 9 t - T; a = 0] , since here a

real reduction is made in the information required concerning f(?) " 3
For instance, if n = 1, k (a = 0] becomes essentially the least square

estimate and no knowledge of f(X) is required. For larger n , if the 3
spectrum is to be estimated from an independent experiment, then estimates I
need only be made at the frequencies of interest -'A a# = l, .-. , n,

considerably reducing the work. 3

I
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For the least square estimate kL given by (1.4), the function K (A)

becomes

TT cpclt~e dt T
KT P0= ( T e =(D ) (4.32)f IT ý(t)lj~dt fTT T(tl 12dt

0 0

For the pseudo-spectral density g(N) =1 ,

z z(A%) = TA + H(A) ,(4.33)

and

K(N) = G t) t(4.34)
TfT wpt) I2dt
0

If this expression is substituted in (4.1) and terms involving H(A)

are neglected, the expression (I ,25) is obtained and the following

results concerning the least square estimate can be deduced: If the

least square estimate is efficient for f(\) ; then if a = 0

f = C2 a = , , n , (4.35)

and if a > 0

F2 n 3 Gr+leiTR(Na) n e rliTR(2a)

E __ - rz *0 (4.36)
a Aa a

as T *co.
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I
I
I,

I
I
I
I.,

U iUi

5 LOCKHEED AIRCRAFT CORPORATION MISSILES and SPACE DIVISION



ABSTRACT

This report presents the results of the author's attempt to find and treat

simplified examples of problems governed by nonlinear space-time systems.

The work was carried out under the General Research Program of Lockheed

Missiles and Space Division.

The introduction sketches the general setting of a "Model of Turbulence" in the

sense of J. M. Burgers, and directs attention to the character of the particular

problem considered here.

Section 2 introduces a special class of nonlinear ordinary differential equations

and explains its relationship to a partial differential system studied by Burgers.

Section 3 takes the first step in a detailed study of this class of equations.

Specifically, it is proved that a certain fourth-order autonomous system of

crdinary equations possesses an unstable equilibrium solution and a stable

periodic solution; and that with increasing time all other solutions tend

asymptotically to one of these two possibilities.
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Section 1

INTRODUCTION

Hydrodynamic turbulence is a variety of parasitic oscillation. Its qualitative

features are easily observed in nature and in the laboratory, yet their mathematical

description has remained for many years at a primitive level. Almost no progress

has been made toward proving - or disproving - that the dynamical (Navier-Stokes)

equations of fluid mechanics possess solutions consistent with observed turbulent

flows.

To gain insight into the mathematical structure of turbulence, J. M. Burgers

initiated in 1939 the study of "models of turbulence" (Refs. 1 and 2). Typically,

one of Burgers' models is a mathematical problem which preserves selected fea-

tures of the hydrodynamical problem yet remains simple enough to admit analytical

study; it does not correspond to any real physical problem, but is studied formally

as a mathematical problem for its suggestiveness and for possible insight into the

nature of its more complex parent.

The relation of Burgers' work to the existing literature on the subject of "isotropic

turbulence" may be clarified by the following quotation (Ref. 1, p. 47):

It should be observed that the theories developed by Taylor,
von Karmad and others are concerned mainly with a different
problem, viz., the character of the turbulence found, e.g.,
in an air current in the wake of a grid, and its gradual decay.
These theories do not consider the side of the problem to
which attention has been given here, viz., the development of
a dissipative secondary phenomenon, which grows by detracting
energy from a given primary phenomenon and in this process
gains such an intensity, that finally a balance is obtained be-
tween the energy detracted and the energy dissipated. This lat-
ter subject is the one which has been traced here through stages
of successive complexity . . . and it will be clear that it has a

E A1-1
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generality much wider than the field of hydrodynamics. The I
problem can be compared to that of the development of relaxa-
tional oscillations, investigated by van der Pol. The classical
example treated by van der Pol, however, refers to a system I
with a single variable, whereas the present case is character-
ized by the appearance of a dissipative secondary phenomenon
embracing an infinite number of degrees of freedom . . .

Referring to phase flows generated by the Navier-Stokes equations, E. Hopf (Ref. 3)

described the motivation for the study of models when he wrote:

How do the solutions which represent the observed turbulent
motions fit into the phase picture? The great mathematical dif-
ficulties of these important problems are well known and at
present the way to a successful attack on them seems hopelessly
barred. There is no doubt, however, that many characteristic I
features of the hydrodynamical phase flow occur in a much

larger class of similar problems governed by nonlinear space-
time systems. In order to gain insight into the nature of hydro-
dynamical phase flows we are, at present, forced to find and to U
treat simplified examples within that class. The study of such
models has been originated by J. M. Burgers in a well known
memoir. I

This paper presents results of the author's attempt "to find and to treat simplified

examples within that class." More specifically, the attempt was to find a model

which compromised the shortcomings of two of Burgers' models. The first of these,

which will be called here the "preliminary model," is the following differential

boundary value problem for a (real valued) function u(x, t) defined for positive

"time," t>0 , on the one-dimensional "space," 05 _x :X 1

S= vu + u- 2uu (,1)1

u(O,t) = u(1,t) = 0 , t>O (1.2) 3
The subscripts here denote partial derivatives, while v is a positive constant which

Burgers calls the viscosity. In Burgers' "interpretation," the function u is thought

of as the turbulent perturbation of an Eulerian velocity field; thus, the obvious solu-

tion u(x,t) = 0 is referred to as the "laminar" solution. If Eq. (1. 1) is multiplied

1-2
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,I

3 by u and integrated over 0_< x -<I , the contribution of the nonlinear term

vanishes because of Eq. (1.2) The contribution of the viscosity term can be inte-

grated by parts, yielding formally the relation

1 1 1
1 d u2 2 u23 f u dxcx=-v f ux dx + ju dx (1.3)

0 0 0

which Burgers calls the "energy equation" because it reveals that the "energy ofs1u2
turbulence," f u dx , tends to be diminished (or dissipated) by the viscosity

o

term and increased by the "driving" term u of Eq. (1. 1), which plays a role analo-

gous to the pressure gradient term of the Navier-Stokes equations. (The question

of which of these influences predominates is discussed in Ref. 4, where it is shown,3• in particular, that Eq. (1. 1) belongs to a class of equations for which a modified

maximum principle holds.)

If v is sufficiently large, it can be proved that the viscous dissipation is pre( -

nant; i. e., all solutions tend to the stationary, laminar solution as t-oo . As

is decreased, however, a positive critical value is reached at which this total sta-

bility of the laminar solution is lost. On the basis of hydrodynamical evidence, it3 would be reasonable to conjecture that this loss of stability marks the entry into a

"turbulent regime" in which a time-dependent periodic solution appears and that

further decrease of v will lead to successive branchings at which more and more

complicated oscillatory solutions become possible. (For a detailed conjecture on

the nature of the branching process and illustrative examples, see Ref. 3.) So far

as is known, however, the model under consideration is not sufficiently sophisti-

cated to display such behavior. A branching process does indeed occur, but the

"turbulent" solutions whibh appear are stationary, i.e., time independent. (For

details see Refs. 1 and 2.)!
In constructing a more complicated turbulence model, Burgers ingeniously excluded3 the possibility of stationary solutions other than the laminar one. Specifically, he

I 1-3
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proposed the system I
Vt =LWV + v-W +(w + v)x

(1.4) 3
wt= vwxx+ v+w+(2vw)x

for two functions v(x,t) , w(x,t) on O x __1 , t2-O subject to I

v(O,t) = v(1,t) = w(O,t) = w(1,t) = 0 , t -0 (1.5) 3
It is convenient to combine Eqs. (1.4) into one equation for the complex valued 3
function

u(x,t) = v(x,t) + iw(x,t) 3
Burgers' model is then I

u =vu + (1+i)u- 2IUt , U= v-iw (1.6)

u(0,t) = u(1,t) = 0 (1.7)

Multiplication of Eq. (1.6) by u , integration over 0 S x S 1, and integration by

parts yield 3
f utdx=-v f Iux 2dx+ (I+i).j f ul2dx (1.8) 1
0 0 0

The real and imaginary parts of Eq. (1. 8) are

1d 1 2 1 (.1 )
2 dt f u = dx- IlUx dx + u.2

0 0 0 1
1-4 1
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and

2i ( ut - u lt)dx f 1 u 12 dx (1.10)

0 0

Equation (1.9) is the energy equation, exactly analogous to Eq. (1.3); Eq. (1. 10)

shows that u = 0 is the only solution independent of the time. If the model has

any turbulent solutions at all, they are not stationary.

But are there any turbulent solutions? As with the preliminary model, it is found

that the laminar solution loses stability below a positive critical value of viscosity.

For subcritical v , there is presumably a turbulent regime. Although Burgers

presented heuristic arguments favoring the existence and boundedness of solutions

for all time, essentially nothing is known with certainty about the behavior of solu-

tions in the turbulent range of v.

Whereas the preliminary model was too simple to display time-dependent turbulent

solutions, this model is not simple enough to permit analysis. It was an attempt to

formulate models of intermediate complexity which generated the results of this

paper.

1-5
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Section 2

A MODIFIED MODEL

INTRODUCTION

Numerical approximations to the solution of a partial differential boundary value

problem are ordinarily obtained with digital or electrical analog computers. Such

machines will accept the problem only in a modified or analogous form. For a

digital computer, the problem must be replaced by one of its approximate "dis-

cretized" versions requiring only algebraic operations. For an analog machine,

the discretization need not be complete; in a space-time system, for example, it is

sufficient to "lump" space alone, leaving time as a continuous variable.

In either case, metamorphosis of the problem requires that functions of a contin-

uous variable be replaced by functions defined on a finite set of points, and that

derivatives be replaced by algebraic differences. There is freedom of choice in the

number "n" of points, i.e., the "fineness" of the discretization, and in the par-

ticular difference scheme employed. No criteria for making these choices are dic-

tated by the original differential problem. Mathematical problems of considerable

depth arise from the questions of how to make these choices in an optimal way and

how to assess the goodness of the resulting approximation.

The more or less arbitrary choice of a particular difference scheme is often justi-

fied by the observation that the distinction between formally admissible schemes

vanishes as n- -c , i. e., in the limit of refinement of the discretization. It may

occur, however, that for small values of n certain special schemes are most ef-

fective in preserving some kind of analogy between the exact and approximate prob-

lems. In discretizing the "space" 0: x _1 involved in Burgers' model Eq. (1.6),

the most obvious and straightforward choice is poor since it does not yield for each

n an exact analog of Eq. (1.8).

2-1
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Specifically, let uk(t) denote an approximation to u(k/n,t) , k= 1 , . . n - 1

and set u0 (t) = u(0,t) = 0 ,Un(t) = u(1,t) 0 . Suppose the u1 to be solutions

of the following system of ordinary differential equations obtained from Eq. (1. 6) by

replacing spatial derivatives by central divided differences:

duk 'k- I - 2uk U + (1+ i) - 2  "k 2I /Uk.i I
k = 1, n

- I
Multiplying by uk and summing on k , it is easily founJ that the exact analog of

Eq. (1. 8) does not hold because the contribution from the nonlinear terms loes

not vanish identically, i. e.,

n-1I
S'2 (u+ - Uk_1) 0.

k=1

In the attempt to find an approximating system without this imperfection, it has been

found sufficient to approximate the function U in the nonlinear term -du.x by the e

average (-uk+ 1 + tk + Uk_1)/3 . Properties of the resulting system will be sum-

marized as Theorem 2.1. 3
THEOREM 2.1:

i>0, n>-2, u° =u = 0, (2.1)

the system I

U- 2-uk+l- 2Uk + Uk-1) + (+i) - + + (2.2)
Uk~ v ~I~±1 3 uk-1 3 uk~ -i,.+ 1(1k+1 u-1Lk 22

for the (complex valued) functions U1 (t), k = 1, 2, . . , n-1 has the following

properties:

2-2
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* Every solution satisfies the relations

n-1 n-1

k-i kd i
(2.3)

ni n-1

3k-1 k-i

n-1 n-1 n-1

U ~ ~ ~ ~ ~ ~ l 2m 2bkki Uk.1)~I
k-l k= i k-i

n-1 
(2.4)

I =•k=1lukl2

5 where

uk uk I exp(ik)

i The solution taking arbitrarily assigned initial values exists uniquely and

is bounded over any finite time interval 0 < t $ T < o.

1 . uk.(t) = 0, k = 1, 2,. . . , n-1 is the only time-independent, i.e., equi-

librium, solution. Define vmn = [ 2n sin (m 7r/2n)] -2, m = 1, . . ., n-1.

(As n -c 1 -o -2 - 0). If v > pin every solution approaches

the zero solution as t - co . If 0 < v < vn-ln , every nonzero solut."04 'p-

3 proaches infinity, i.e.,

n-1

I juk12' as t--
k-1

52-3
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I
I

Proof. I
1. After multiplying Eq. (2. 1) by uk and summing on k, Eqs. (2.3) and 3

(2.4) follow from the

Lemma: If uk, k=O , 1, . . . , n are complex numbers with u0 =un =0, 3
then

uk (uk+i - 2uk + u_,) I- I % N-1 2 (2.5)

and

n-1

I @k (k + + u+1 (,+1 - -1 0 . (2. 6)

k--(

Equation (2.5) follows at once from the Abel partial summation formula, quite I
analogously to the integration by parts used in obtaining Eq. (1. 8). Equation

(2.6) follows from the observation that the k summand can be written as 3
2 2

ak ak-1+ ' 3 k-k-i' where akk U2k+ 1,I Uk sothattliekl aO P Pk k2+1 Ukenota

sum telescopes to en-1 - 0. + fln- 00 = 0

2. It is apparent from classical theorems that a unique solution to the initial value 3
problem exists for some interval 0 <. t < T . That T may be assumed ar-

bitrarily large follows from the classical extension theorem once it is shown that

n-1
c(t) = 1 1 Uk 12

k=1 I
is bounded over any finite interval. To prove this, observe that the right member

of Eq. (2.3) is a hermitian form (call it H) in the variables u1 ..... un 1 . I

I
2-4 1
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In the sequel, it will appear that the eigenvalues of this form are given explicitly,

in decreasing order, by Xkk- 1 - 4pn2 sin2 (k7r/2n) , k1-, 2, ... , n-1 . By a

well-known characterization of the least and greatest eigenvalues,

A n-1 c H < 1 c

yielding, from Eq. (2. 3), the differential inequality

3n- c(t) .< 1 c(t) < X1 c(t)

I1 Integration gives
I2Xn t 2Xlt

c(o) e -< c(t) < c(o) e (2.7)

3 which exhibits the desired bound.

1 3. The uniqueness of the equilibrium solution is obvious from Eq. (2.4). The

remaining assertions are implied by Eq. (2.7) upon noting that v > ln implies
X1 <0 and v< vn-ln implies A n1>0 .

As in the models considered by Burgers, Eq. (2. 2) exhibits a "laminar" regime, V > vln

in which all solutions tend to a totally stable unique laminar solution. For fixed n

and small v, however, the model encounters a deficiency inherent in finite discretiza-

tion schemes. Of necessity, a function defined on a finite mesh cannot adequately

approximate spatial fluctuations on a scale smaller than the mesh spacing; in a model

of turbulence like Burgers', however, fluctuations on a finer and finer spatial scale

are to be expected with diminishing viscosity. It is, therefore, not surprising that

solutions of a model like Eq. (2. 2) are found to "blow up" if v is too small. As a

consequence, it is apparent that Eq. (2.2) can display "interesting" behavior only

3 2-5
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in some range v'< v < vln, and then Eq. (2. 1) gives Vn ln as a lower bound

on v

in the case n = 2, the model is essentially trivial, since Eq. (2.2) reduces to a

single linear equation and the interval of interest degenerates to a point, i.e.,

vn-ln = vin * It is suggestive, however, that for v = vin , all solutions are periodic.

The simplest nontrivial case, n = 3 , will be analyzed in Section 3. In the remainder 3
of this section, the effect upon Eq. (2.2) of a particular change of dependent variables

will be described. 3
One of the tools used by Burgers in his study of Eq. (1. 8) and similar equations is

the expansion of the solution function in Fourier series; the partial differential equa-

tion yields formally an infinite system of ordinary differential equations for the

determination of the Fourier coefficients as functions of time. At a fixed time, the

coefficients may be called a "spectrum" which describes the harmonic content of

the spatial distribution of "turbulent" fluctuations; the significance of this spectrum

and various questions concerned with its change with time are discussed in Burgers'

papers (Refs. 1 and 2). 3
To obtain an analogous (but finite) spectrum for the discretized model Eq. (2. 2), the I
solution uk(t) may be expanded (with respect to the spatial variable k) in a finite

sine series; in other words, new complex coordinates k may be introduced in place

of the uk in the (complex, n - 1 dimensional) phase space of the system (2.2) I
by means of the transformation II

n-1

uk = j sinj , k = 1,2, ... ,n-i (2.8)

j=l

I

2-6 3
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Abbreviating sin =kj and noting the orthogonality relation

n1 n-1 n/2 i=j- • n- •j=•6..
I ki kk 2 11 0 i ; ij

the inverse transforn.iation is easily found to be

n-1

uk u (2.9)
k=k

Inserting Eq. (2.8) in Eq. (2. 2) and performing algebraic reductions lead to theu following systems of equations for the t

"•I k(Xk±+ k)k-3 E i i+k -6 1 'li'k-i •i k-i (2.10)
1 _<i< ~k_<•-11:_i, k-i_<n- 1I

k= 1, 2..., n-1

where

. =sinjn(I+ 2cosk!) -sink-r(1+ 2cosj Z)

jk sin j(1+ 2cosk- ) + sin k -1 (1 + 2 cos j -0

2 .2 kir
Xk 1- 4vn 2sin 2-n

I i.e., the linear part of the system has been diagonalized by the change of coordinates.

* 2-7
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3 Section 3

THE CASE n = 3

1 INTRODUCTION

3 If n 3, Eqs. (2.2), (2.8), (2.9), and (2.10) have the following forms,

u1 (1- 18P+ i) u 1 + 9vu 2 -(u 1 + u2 ) u2

I 2 9 Vu1 + (I- 18P + i) u2 + (u1+ u 2) uI (3.1)

= -V-3 (• 2)

u 2 E31 ( -2) (3.2)

•I=-L (ul + u2I f 1 2
t 2 = 73-' (ul - u2) (3.3)U

= (1 - 9V + i) C + 7 C1C2

I • 2 (1- 27v+ i) t2 -v7 4-1 2 (3.4)

The most evident property of the system (3.4) will be stated as Theorem 3.1.

I
I
3 3-1
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THEOREM 3.1 I

If Y1 (t) , t2(t) is a solution of Eq.(3.4) in an interval containing a point t such

that •l(t) = 0, then I

Yl(t) = 0 , 2 (t) = 92 (to) exp [(1 - 27v + i) (t - to)] (3.5) 1
is the unique extension of the given solution to -0o < t < + -o. 1

This theorem implies that the phase point sets 4, = 0 and 41 t 0 are

invariant manifolds; solution trajectories never pass from one to the other. Solutions

of the form Eq. (3.5)will be subsequently referred to as trivial. For v > 1/27, it is

apparent that all trivial solutions approach the zero solution.

Because of the complex notation, Eq.(3.5) is a convenient condensation for a system

of four first-order differential equations for four real-valued functions. For dis-

cussion of the nontrivial solutions, real coordinates will be introduced which permit

the reduction of the initial-value problem for Eq. (3.4) to the initial-value problem for

a system of three real differential equations plus a quadrature.

THEOREM 3.2

The solution of Eq. (3.4) taking initial values (0) 4 0, •2(0) is given by I
,l~t = 111g(0) NZ4"_(t) exp I ifo El-y(s,] ds}

(3.6)

t -(0) [x(t) + i y (t) ] exp [1- ds

3-2
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3 in which x(t), y(t) , z (t) is the solution of the system

k=(1- 27p)x - 3y- z + 2y 2  (3.7a)

3 3x+ (1- 27v) y - 2xy (3. 7b)

Zffi2(1-9i9) z + 2xz (3.7c)

satisfying the initial conditions dictated by the special case t = 0 of the transformation
relations

•= r3- t) t2(t)

x(t)+ iy(t) Mfi t , z(t)=31 l(t)12  (3.8)

Proof. The proof consists of straightforward verification and will be omitted. In its
place the formal processes leading to Eqs. (3.7)will be sketched. ("Formal" here
refers specifically to the fact that possible discontinuities of the function 4 2(t)3 defined below are ignored.)

5 Into Eqs. (3.4) introduce real polar coordinates by

33 k = Pk exp (i qk) , k = 1,2 (3.9)

3 The following differential equations are found for Pk I (k

S( 1- 9v)p+ P1 P2 cos (2ý 1 + 2)

? 2 L• 27v) p 2 p 1 cos (20 1 + '02) (3.10)

I 3-3
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Pl ý 1  Pi= P1 -PiP 2 sin(2( 1 + I2)
P2 (2= p2 + Pl sin (2q'1 + (P2 ) (3.11)

By defining a new variable 4' 2 (p + (p2 , Eqs. (3. 11) yield formally I

21
n- 1 s(3.12)

Now Eqs. (3. 10) and (3.12) constitute a third-order system for p1 , P 2 ' 4 as functions

of t. Given a solution of this system the functions (1 ' (2 can be found by quadra- I
ture from Eqs. (3.11).

The system of Eqs. (3.7) now results from transformation of the system (3.10)

an4 (3.12) according to J
x = p 2 cos 4'

Y =P 2 sin 4

=2Z =P2

p1

The combined transformation from Eqs. (3.4) to (3. 7) is given by Eq. (3.8). The first

of Eqs. (3. 11) yields

t

(pi(t) = 1i(o) +f [1 - y(s)] ds

3-4
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or

-11(o)J exp f[i - y(s)] ds

-_ or__tl-(t)T 'Tl(°ml~

The transformation employed can be interpreted so as to yield also a correspondence

between the trivial solutions of Eq. (3.4) and solutions of Eqs. (3.7) with z(t) = 0

simplicity is lost in the process, however, since the restriction of Eq. (3.4) to3, =10 leaves a linear system while the restriction of Eqs. (3.7) to z =0 is non-

linear.

It is easily seen that in the (invariant) half-space z > 0 the system (3.7)

can have at most one critical point. In fact, setting the right-hand members equal

Sto zero, Eq. (3.7) implies

3 X~x =9p- 1

3 Eq. (3. 7b) then requires 1 - 9V

=1-9vpY =Yc = 1 - 15P

I and Eq. (3.7a) requires
z z= zc =(1- 9v) (27/v - 1) [ 1 + (I - 15v)-2

This point (xc, Ye' Zc) belongs to the half-space z > 0 if v lies in either of the intervals3 1/27 < P < 1/15 or 1/15 < y < 1/9. That the first interval represents values of V too small

to yield "interesting" results in the case n = 3 is suggested by the following negative result.

* THEOREM 3.3

3l If 1/27 < v < 1/15 , every solution of Eqs. (3.7) which intersects the region z > 0

y < 3/2 is unbounded as t - + co .

I 3-5
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Proof. Using Eqs. (3. 7), it is readily verified that for any solution I
d z(y-3) eI - 215v)t7=•(l-2 7v) ze-3 150t z

For a nontrivial solution (z (t) > 0) and v > 1/27 , this implies 3

d y1 -3(1 - 15v)t 1 0
TF 210

Hence for tl <t 2 I
z(t 2 ) (y(t2 )_3 < z (t,) (y(tj) - 3) e-3(1 - 15Iv) t - t2 )

If Y(tl) - 3/2 < 0 , v < 1/15 , and z (t) is bounded, this inequality implies

Y(t 2 ) -- - oo as t2- o. Under the hypothesis of the theorem, therefore, at least

one of the functions z (t) , y(t) is not bounded. 5
Against this negative result for 1/27 < v < 1/15 , the theorem following reveals

interesting behavior for solutions of Eqs. (3. 7)for at least a part of the interval 3
1/15 <v < 1/9 .

THEOREM 3.4

There is a number v' , 1/15- v'< 0.0836 <1/9 such that for v' < v <1/9 every

nontrivial solution of the system (3.7) approaches the equilibrium solution

(x c Yc, Zc) as t- -: Eqs. (3.6) then imply that c nontrivial solution of

Eqs. (3.4) approaches a periodic solution. I
3-6 1
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Proof. The proof depends on the following properties of the function

V(x, y, z) =(x-x) 2+ (y -y)2+ (Z z Z- Zlog - (3.13)I
defined in the half-space z >0, -0 <x, y<+ 0c.

"* V>O V=0 if and only if xsixc ,y=yc, z=z

* V V--* if either z -0 or x 2+ y2_._o in z >0.

" If 0 <5a <0 , the set E(a)=I(x,y,z) I V(x,yz)_• al is a closed and bounded

subset of z > 0 and E(a)C E(fl) if a < 6 .

"* Along a solution curve of the system (3.7).I
dV = (2+ 3x ) (x-x )2 2y(x x)(y y)+ (2+ 5X) (y y) 2  (3.14)
Tdt c c C c c c c

The right-hand member of this relation is a positive definite quadratic form

in the variables (x - , (y - yc) provided that v'< v < 1/9 , where

v' = 0. 0836 is the I real root of the discriminant (which is a rational3 function of v). The , implication of Eq.(3.14)needed in the proof is the

inequality

I1 dV xx c2

2dVt - B c)2+ (y-yc)2] (3.15)

I where

B=2(1-2X)- x y 2

c 1ci

is the positive smallest eigenvalue of the form.

I These properties are either obvious or can be proved by direct calculation.

I 3-7
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If x(t) , y(t), z(t) is the solution of Eqs. (3.7)with initial values x0  YO , z0> 0

and if a o , y0  , z0) , the phase point (x(t), y(t), z(t)) belongs to E(ao ) for

t 2!0 since V = V[x(t) , y(t) , z(t)] is a nonincreasing function of t by Eq. (3. 15).

Thus, the phase point is bounded; from Eqs. (3.7), it follows that the phase-point 3
velocity (k2 + Y"2 + i2)1/2 is also uniformly bounded for t Ž 0

It will be shown first that x(t) - xc and y(t) - ye as t - • , or, equivalently, that I
no point of the limit set of a solution lies off the half-line z > 0.(x - x:)2 + (y - yd = 0

Assuming the contrary, there is point P of the limit set, a neighborhood, N(P) , of
2 2

P , and an o > 0 such that N(P) does not intersect the cylinder (x - xe) + (y - y0 2 .
During the time intervals that the phase point lies in N(P), Eq. (3. 15) implies I
dV/dt _ - 2B E . Since V is nonnegative and nonincreasing, this inequality implies

that the time which a phase point spends in N(P) is bounded. The boundedness of the 3
phase point velocity and the assumption that P belongs to the limit set imply, how-

ever, that the time spent in N(P) is unbounded. The contradiction proves that the

limit set lies on the half-line and hence that x(t) - xcand y(t) c

It remains to 1drove that lir z(t) exists and equals z . Along a trajectory, V 3c

decreases and thus has a limit. From Eq. (3.13) and the existence of limits for

V, x, and y, there follows the existence of lim (z - z log z) and, hence, that of

lira z. From Eq. (3.7a), the existence of lim x is then immediate. But if lim x

and lim x exist, it follows at once that lira x 0. Hence, the right-hand member

of Eq. (3.7a) converges to zero as t - 00, which implies that lim z = z and con-

cludes the proof. I

I
I
I
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